G. 04.02 Geometry (9) || ज्यामितीय || Polygon (2) Polygon And Its Part

G. 04.02 Geometry (9) || ज्यामितीय || Polygon (2) Polygon And Its Part

By
Om Jitender Singh Tomar 
(ॐ जितेन्द्र सिंह तोमर)
M.A., B.Ed., DNYS, MASSCOM
11/1/10/1/2022

Polygons
A simple closed curve made up of only line segments is called a polygon.

Regular and irregular polygons

Regular polygon
A polygon with equal sides and angle is called regular polygon.
For example, 
Equilateral Triangle is three sided irregular polygon and a square is four sided irregular polygon because of sides of equal length and angles of equal measure. 

Irregular polygon
A polygon with unequal sides and unequal angle is called irregular polygon.
A rectangle a irregular polygon
Classification of polygons
We classify polygons according to the number of sides (or vertices) they have.

3 – sides Polygon           Triangle
4 – sides Polygon           Quadrilateral
5 – sides Polygon            Pentagon
6 – sides Polygon            Hexagon
7 – sides Polygon            Heptagon
8 – sides Polygon            Octagon
9 – sides Polygon            Nonagon
10 – sides Polygon          Decagon
n – sides Polygon            n-gon 

Diagonals
 A line segment connecting two non-consecutive [or Opposite] vertices of a polygon is called a diagonal.

No. of Diagonals = Sides (Sides – 3)/2

No. of Diagonals in Triangle 
Sides= 3
No. of Diagonals = Sides (Sides – 3)/2
                               = 3 (3 – 3)/2
                               = 3 (0)/2
                               = 0

No. of Diagonals in quadrilateral 
Sides= 4
No. of Diagonals = Sides (Sides – 3)/2
                               = 4 (4 – 3)/2
                               = 4 (1)/2
                               = 4/2
                               = 2

No. of Diagonals in Pentagon 
Sides= 5
No. of Diagonals = Sides (Sides – 3)/2
                               = 5 (5 – 3)/2
                               = 5 (2)/2
                               = 10/2
                               = 5

Angle sum property
The sum of the measures of the three angles of a triangle is 180°. 

Angle sum of a polygon
[No. of the Sides – 2] = 180⁰

Angle sum property of Triangle [ASPOT]
Sides= 3
Angle sum of Triangle = (Sides – 2)180⁰
                                       = (3 – 2)180⁰
                                       = (1)180⁰
                                        = 180⁰
                              

Angle sum property of Quadrilateral [ASPOQ]
Sides= 4
Angle sum of Quadrilateral = (Sides – 2)180⁰
                                               = (4 – 2)180⁰
                                               = (2)180⁰
                                              = 360⁰
Angle sum property of Pentagon [ASPOP]
Sides= 4
Angle sum of Pentagon = (Sides – 2)180⁰
                                               = (5 – 2)180⁰
                                               = (3)180⁰
                                              = 540⁰

Sum of the Measures of the Exterior Angles of a Polygon
The sum of the measures of the external angles of any polygon is 360°.
m∠1 + m∠2 + m∠3 + m∠4 + m∠5 = 360°

Sum of the Measures of the Exterior Angles of a regular Polygon
The sum of the measures of the external angles of any regular polygon is 360°.

No. of sides × measure of exterior angle = 360°

(i) 
No. of sides = 360° /Measure of exterior angle

(ii) 
Measure of exterior angle = 360°/No. of sides

Post a Comment