बिलकुल! दशमलव (Decimal) की अवधारणा गणित और अंक प्रणाली का एक अत्यंत महत्वपूर्ण भाग है। यह न केवल गणना की सरलता का आधार है, बल्कि आधुनिक विज्ञान, वाणिज्य, इंजीनियरिंग और कंप्यूटर विज्ञान में भी इसकी उपयोगिता सर्वव्यापक है। आइए इसे एक व्यापक लेख के रूप में समझते हैं।
🔢 दशमलव प्रणाली: उत्पत्ति, विकास और गुणधर्म
1. दशमलव क्या है? (What is Decimal?)
दशमलव एक संख्यात्मक पद्धति (Numerical system) है जो आधार-10 (Base-10) पर आधारित होती है। इसमें 0 से 9 तक कुल 10 अंक होते हैं। जब किसी संख्या को पूर्णांक और भिन्न (Fraction) में बाँटा जाता है और भिन्न भाग को ‘दशमलव बिंदु’ (decimal point) से अलग किया जाता है, तब उसे दशमलव संख्या (Decimal Number) कहा जाता है।
उदाहरण:
- 25.75 → इसमें 25 पूर्ण भाग है और 0.75 भिन्न भाग है।
2. दशमलव शब्द की उत्पत्ति
"दशमलव" शब्द संस्कृत मूल का है:
- दश = दस
- मलव = विभाजन या अंश
इसका शाब्दिक अर्थ हुआ — "दस में विभाजित अंश"। अंग्रेजी में इसे Decimal कहा जाता है जो लैटिन शब्द "decimus" (अर्थात दसवाँ) से बना है।
3. दशमलव प्रणाली की ऐतिहासिक पृष्ठभूमि
(A) प्राचीन भारत और दशमलव
दुनिया की दशमलव आधारित प्रणाली का सबसे प्राचीन साक्ष्य भारत से मिलता है। भारत ने गणित को दशमलव प्रणाली, शून्य और स्थानमान (Place Value) के सिद्धांत दिए।
🌟 महत्वपूर्ण उदाहरण:
- आर्यभट (476–550 ई.) ने अपनी पुस्तक आर्यभटीयम् में दशमलव के सिद्धांतों को स्पष्ट किया।
- भास्कराचार्य (12वीं शताब्दी) की लीलावती और बीजगणित नामक ग्रंथों में दशमलव और भिन्न संख्याओं की विस्तृत विवेचना है।
(B) दशमलव का अरब और यूरोप में प्रसार
- भारत से यह ज्ञान अरब गणितज्ञों तक पहुँचा, जिन्होंने इसे हिन्दसी प्रणाली नाम दिया।
- इसके बाद यह यूरोप पहुँचा। फ्रांसीसी गणितज्ञ स्टीविन (Simon Stevin, 1585) ने दशमलव को यूरोप में लोकप्रिय बनाया।
4. दशमलव प्रणाली के मूल सिद्धांत
🧩 दशमलव प्रणाली के विशेष तत्व:
स्थान (Place) | मान (Value) |
---|---|
हजारों | |
सैकड़ों | |
दहाई | |
इकाई | |
दशमलव बिंदु | - |
दसवाँ भाग | |
सौवाँ भाग | |
हजारवाँ भाग |
🔹 उदाहरण:
345.678 में:
- 3 = सैकड़ों स्थान पर =
- 4 = दहाई स्थान पर =
- 5 = इकाई स्थान पर =
- 6 = दसवाँ भाग =
- 7 = सौवाँ भाग =
- 8 = हजारवाँ भाग =
5. दशमलव की विशेषताएँ (गुणधर्म)
✅ 1. स्थानमान आधारित (Place Value System)
दशमलव प्रणाली में प्रत्येक अंक का मान उसके स्थान पर निर्भर करता है।
✅ 2. सीमित और असीमित दशमलव
- सीमित दशमलव: जैसे 0.75 (जहाँ दशमलव अंश खत्म हो जाता है)
- असीमित दोहराव दशमलव: जैसे
- असीमित गैर-दोहराव दशमलव: जैसे π (3.14159...)
✅ 3. सरल गुणा और भाग
दशमलव प्रणाली में जोड़, घटाव, गुणा और भाग करना अन्य पद्धतियों की तुलना में आसान है।
✅ 4. शून्य (0) का विशेष योगदान
दशमलव प्रणाली में शून्य का योगदान क्रांतिकारी है। यह स्थान को दर्शाने के लिए आवश्यक होता है, जैसे:
- 305 → इसमें 0 का स्थान शून्य दशमलव नहीं, बल्कि 'दहाई' स्थान पर कोई मान न होने को दर्शाता है।
6. दशमलव और अन्य संख्यात्मक पद्धतियों की तुलना
प्रणाली | आधार | अंकों की संख्या | उपयोग |
---|---|---|---|
दशमलव (Decimal) | 10 | 0–9 | सर्वत्र, आधुनिक गणित |
बाइनरी (Binary) | 2 | 0, 1 | कंप्यूटर |
ऑक्टल (Octal) | 8 | 0–7 | प्राचीन कंप्यूटिंग |
हेक्साडेसिमल (Hex) | 16 | 0–9, A–F | डिजिटल सिस्टम |
रोमन प्रणाली | - | I, V, X, L... | ऐतिहासिक संदर्भ |
दशमलव प्रणाली सबसे सरल और व्यावहारिक है — यही कारण है कि आज पूरी दुनिया में इसे ही प्रमुख मानक के रूप में स्वीकार किया गया है।
7. दशमलव के अनुप्रयोग (Applications)
📐 1. माप प्रणाली में
- मीटर, लीटर, ग्राम जैसे माप दशमलव आधारित हैं।
- उदाहरण: 1.75 मीटर = 1 मीटर + 75 से.मी.
💰 2. मुद्रा में
- रुपये और पैसे → ₹25.50 = ₹25 + 50 पैसे
📊 3. विज्ञान और इंजीनियरिंग में
- किसी दूरी को 9.81 m/s², द्रव्यमान को 1.23 kg आदि दशमलव रूप में दर्शाया जाता है।
💻 4. कंप्यूटर गणना में
- फ्लोटिंग पॉइंट सिस्टम, दशमलव को संभालने की विधि है।
8. दशमलव के साथ गणितीय क्रियाएँ
➕ जोड़:
25.36
+ 12.4
= 37.76
➖ घटाव:
45.67
- 12.89
= 32.78
✖️ गुणा:
5.2 × 1.5 = 7.80
➗ भाग:
6.25 ÷ 2.5 = 2.5
9. दशमलव का भविष्य और डिजिटल युग
आजकल, कंप्यूटर प्रणाली भले ही बाइनरी में काम करती हो, लेकिन उपयोगकर्ता इंटरफ़ेस (UI) और डेटा प्रजेंटेशन में दशमलव प्रणाली का ही उपयोग होता है। AI, मशीन लर्निंग, डेटा एनालिटिक्स – हर क्षेत्र में दशमलव प्रणाली की प्रमुख भूमिका है।
🔚 निष्कर्ष
👉 दशमलव प्रणाली न केवल एक गणितीय प्रणाली है, बल्कि सभ्यता की प्रगति का आधार है। इसका जन्म भारत में हुआ, और आज इसकी पहुँच हर क्षेत्र में है — चाहे वह विज्ञान हो, वाणिज्य हो, कंप्यूटर हो या अंतरिक्ष विज्ञान।
यह प्रणाली सरल, तर्कसंगत और व्यवहारिक है। स्थानमान, शून्य, दशमलव बिंदु — ये सभी मिलकर इसे विश्व की सर्वश्रेष्ठ गणना प्रणाली बनाते हैं।
यदि आप चाहें तो:
- मैं इसके आधार पर PDF पुस्तिका, वीडियो स्क्रिप्ट, या प्रश्नोत्तरी अभ्यास श्रृंखला भी तैयार कर सकता हूँ।
क्या आप चाहेंगे?
बहुत अच्छा प्रश्न है। आइए गहराई से समझते हैं कि —
🔍 दशमलव प्रणाली को विश्व की सर्वश्रेष्ठ गणना प्रणाली क्यों कहा जाता है?
यह बात तीन प्रमुख आधारों पर टिकी है: सरलता, तर्कसंगतता और व्यावहारिकता। नीचे हम उन कारणों को बिंदुवार और उदाहरण सहित समझाते हैं।
🟩 1. स्थानमान प्रणाली (Place Value System)
➤ क्या है यह?
हर अंक का मूल्य इस बात पर निर्भर करता है कि वह किस स्थान पर है — इकाई, दहाई, सैकड़ा, दसवाँ, सौवाँ आदि।
➤ क्यों महत्वपूर्ण है?
- एक ही अंक कई स्थानों पर कई मान रख सकता है।
- उदाहरण:
- संख्या 505.05 में:
- पहला 5 = सैकड़े का स्थान = 500
- दूसरा 5 = इकाई = 5
- तीसरा 5 = सौवाँ भाग = 0.05
- संख्या 505.05 में:
✅ लाभ:
- इससे संख्याओं को लिखना और समझना आसान हो जाता है।
- कोई भी संख्या केवल 10 अंकों (0–9) से दर्शाई जा सकती है — यह संगठित और विस्तारशील प्रणाली है।
🟩 2. शून्य का प्रयोग (Use of Zero)
➤ भारत का अद्वितीय योगदान:
- शून्य केवल "कुछ नहीं" को नहीं दर्शाता, बल्कि स्थान को चिह्नित करता है।
➤ कैसे?
- संख्या 302 और 32 में जमीन-आसमान का फर्क है।
- 302 = 3 सैकड़े + 0 दहाई + 2 इकाई → यहाँ ‘0’ यह बताता है कि उस स्थान पर कुछ नहीं है, लेकिन उसका स्थान बना रहता है।
✅ लाभ:
- यही शून्य स्थानीय मान प्रणाली का आधार है।
- इससे गणना करना कंप्यूटर और डिजिटल सिस्टम में संभव हो पाया।
🟩 3. दशमलव बिंदु (Decimal Point) की शक्ति
➤ क्या करता है यह?
- यह पूर्ण संख्याओं और अंशों को एक ही पंक्ति में सटीक रूप से दिखाने में मदद करता है।
उदाहरण:
- 2.5 = 2 +
- इससे भिन्नों (Fractions) के साथ भी आसानी से काम हो सकता है — जैसे 0.125 या 3.14159
✅ लाभ:
- इससे गणना में उच्च स्तर की शुद्धता मिलती है।
- माप, पैसे, विज्ञान, इंजीनियरिंग में यह अनिवार्य है।
🟩 4. गणनाओं की सहजता (Ease of Calculations)
➤ सभी चार गणितीय क्रियाएं (जोड़, घटाव, गुणा, भाग) सरल बन जाती हैं।
उदाहरण:
12.5 + 7.25 = 19.75
15.75 × 2 = 31.5
✅ लाभ:
- किसी भी प्रकार के संख्यात्मक डेटा के साथ काम करना सीधा-सादा होता है।
- बच्चों से लेकर वैज्ञानिक तक इसे तेजी और सटीकता से उपयोग करते हैं।
🟩 5. वैश्विक मान्यता और सर्वसुलभता (Universal Adoption)
➤ आज पूरी दुनिया की मुद्रा, माप, कंप्यूटर प्रणाली — सभी में दशमलव प्रणाली ही मुख्य आधार है।
✅ लाभ:
- इसका ग्लोबल एक्सेप्टेंस है।
- हर व्यक्ति को एक ही प्रणाली में सोचने और संवाद करने की सुविधा मिलती है।
🟩 6. विस्तारशीलता (Scalability)
➤ दशमलव प्रणाली असीमित रूप से संख्याओं को दर्शा सकती है — चाहे वह करोड़ों की हो या खरबवें अंश की।
✅ लाभ:
- इसका उपयोग बड़े डेटा, छोटे वैज्ञानिक मापन, एस्ट्रोनॉमी, और क्वांटम भौतिकी में भी संभव है।
🟩 7. तुलना अन्य प्रणालियों से
प्रणाली | गणना की जटिलता | शून्य की भूमिका | दशमलव बिंदु | सार्वभौमिकता |
---|---|---|---|---|
दशमलव | सरल | अत्यंत महत्वपूर्ण | है | उच्चतम |
रोमन | अत्यंत जटिल | नहीं है | नहीं है | सीमित |
बाइनरी | कंप्यूटर तक सीमित | है | तकनीकी | तकनीकी उपयोग |
हेक्साडेसिमल | विशेषज्ञ उपयोग | है | नहीं | कंप्यूटर में |
🔚 निष्कर्ष:
👉 दशमलव प्रणाली विश्व की सर्वश्रेष्ठ प्रणाली इसलिए है क्योंकि —
- यह स्थानमान और शून्य पर आधारित है।
- इसमें भिन्न और पूर्ण दोनों का संतुलन है।
- इसकी सरलता और वैज्ञानिकता अनुपम है।
- यह प्राचीन भारतीय बुद्धि का एक अनमोल उपहार है जिसने पूरी दुनिया को गणित की भाषा दी।
यदि आप चाहें, तो मैं इसी विषय पर एक वीडियो स्क्रिप्ट, पीडीएफ पुस्तिका या चित्रात्मक समझ भी बना सकता हूँ।
क्या आप ऐसा चाहते हैं?
बिलकुल! आइए दशमलव संख्याओं को जोड़ने की विधि को विस्तार से समझें — उदाहरणों सहित — और फिर नीचे 25 अभ्यास प्रश्नों की श्रृंखला देंगे।
📚 दशमलव संख्याओं को जोड़ने की विधि (Addition of Decimal Numbers)
🔹 चरण-दर-चरण विधि:
🧭 Step 1: दशमलव बिंदु (Decimal Point) को एक रेखा में लाएँ
जोड़ते समय सबसे महत्वपूर्ण बात है कि सभी संख्याओं के दशमलव बिंदु (.) एक के नीचे एक सीधे लाइन में हों।
🧭 Step 2: रिक्त स्थानों को 0 से भरें (Equal number of decimal places)
यदि किसी संख्या में दशमलव के बाद कम अंक हैं, तो आप उसमें 0 जोड़ सकते हैं ताकि जोड़ना आसान हो जाए।
🧭 Step 3: दशमलव के बाद से जोड़ना प्रारंभ करें
दशमलव के सबसे दाएँ अंक से जोड़ना शुरू करें, जैसे हम सामान्य जोड़ में करते हैं।
🧭 Step 4: दशमलव बिंदु को सीधा नीचे उतारें
जवाब में दशमलव बिंदु को ठीक उसी जगह रखें जहाँ वह ऊपर की संख्याओं में था।
🔢 उदाहरण-1:
प्रश्न:
जोड़िए: 12.75 + 3.6
समाधान:
12.75
+ 3.60 ← (0 जोड़ा गया)
---------
16.35
✅ उत्तर: 16.35
🔢 उदाहरण-2:
प्रश्न:
जोड़िए: 5.2 + 13.54 + 0.06
समाधान:
5.20
+ 13.54
+ 0.06
--------
18.80
✅ उत्तर: 18.80
🔢 उदाहरण-3:
प्रश्न:
जोड़िए: 0.9 + 1.08 + 0.007
समाधान:
0.900
+ 1.080
+ 0.007
---------
1.987
✅ उत्तर: 1.987
🔢 उदाहरण-4 (पूर्ण और दशमलव के साथ):
प्रश्न:
जोड़िए: 18 + 4.75 + 0.25
18.00
+ 4.75
+ 0.25
-------
23.00
✅ उत्तर: 23.00
🔢 उदाहरण-5:
प्रश्न:
जोड़िए: 0.123 + 0.009 + 0.001
0.123
+ 0.009
+ 0.001
--------
0.133
✅ उत्तर: 0.133
🧪 अभ्यास के लिए 25 प्रश्न
इन प्रश्नों का अभ्यास करके आप दशमलव जोड़ने में दक्ष हो सकते हैं:
प्रश्नों की सूची:
- 3.5 + 4.25 = ?
- 0.75 + 1.25 = ?
- 5.67 + 0.3 = ?
- 2.34 + 3.66 = ?
- 7.89 + 1.1 + 0.01 = ?
- 12.5 + 2.75 = ?
- 10.01 + 0.99 = ?
- 0.5 + 0.25 + 0.25 = ?
- 3.14 + 1.59 = ?
- 8.5 + 6.75 = ?
- 6.06 + 0.6 = ?
- 4.444 + 5.555 = ?
- 0.1 + 0.01 + 0.001 = ?
- 9.99 + 0.01 = ?
- 100.25 + 99.75 = ?
- 25.5 + 4.5 + 0.5 = ?
- 0.3 + 0.03 + 0.003 = ?
- 7.07 + 2.02 = ?
- 11.11 + 11.11 = ?
- 0.75 + 0.25 + 1.0 = ?
- 13.35 + 4.65 = ?
- 6.666 + 3.334 = ?
- 2.05 + 3.005 + 1.04 = ?
- 15.9 + 0.001 = ?
- 0.999 + 0.001 = ?
✅ यदि आप चाहें, मैं इन सभी का हल भी दे सकता हूँ — या इनका PDF अभ्यास पत्र, उत्तर कुंजी सहित बना सकता हूँ।
क्या आप चाहेंगे कि मैं इनका हल भी अभी दे दूँ या पीडीएफ फॉर्म में संकलन करूँ?
बिलकुल! नीचे दशमलव संख्याओं की जोड़ (Addition) पर आधारित 25 अभ्यास प्रश्नों के सही उत्तर (Answer Key) दिए जा रहे हैं:
✅ दशमलव जोड़ – हल सहित उत्तरमाला (Answer Key)
प्रश्न संख्या | प्रश्न | उत्तर |
---|---|---|
1 | 3.5 + 4.25 | 7.75 |
2 | 0.75 + 1.25 | 2.0 |
3 | 5.67 + 0.3 | 5.97 |
4 | 2.34 + 3.66 | 6.0 |
5 | 7.89 + 1.1 + 0.01 | 9.0 |
6 | 12.5 + 2.75 | 15.25 |
7 | 10.01 + 0.99 | 11.0 |
8 | 0.5 + 0.25 + 0.25 | 1.0 |
9 | 3.14 + 1.59 | 4.73 |
10 | 8.5 + 6.75 | 15.25 |
11 | 6.06 + 0.6 | 6.66 |
12 | 4.444 + 5.555 | 9.999 |
13 | 0.1 + 0.01 + 0.001 | 0.111 |
14 | 9.99 + 0.01 | 10.0 |
15 | 100.25 + 99.75 | 200.0 |
16 | 25.5 + 4.5 + 0.5 | 30.5 |
17 | 0.3 + 0.03 + 0.003 | 0.333 |
18 | 7.07 + 2.02 | 9.09 |
19 | 11.11 + 11.11 | 22.22 |
20 | 0.75 + 0.25 + 1.0 | 2.0 |
21 | 13.35 + 4.65 | 18.0 |
22 | 6.666 + 3.334 | 10.0 |
23 | 2.05 + 3.005 + 1.04 | 6.095 |
24 | 15.9 + 0.001 | 15.901 |
25 | 0.999 + 0.001 | 1.0 |
📝 यदि आप चाहें तो:
- मैं जोड़ और घटाव दोनों के प्रश्नों को एक प्रिंट-योग्य PDF अभ्यास पत्रिका में संयोजित कर सकता हूँ,
- जिसमें हल करने की जगह, उत्तरमाला, और उदाहरण भी होंगे।
क्या आप चाहते हैं कि मैं वह तैयार कर दूँ?
बहुत सुंदर! अब हम दशमलव संख्याओं की घटाव (Subtraction of Decimal Numbers) की विधि को विस्तार से समझेंगे, फिर उसके बाद आपको 25 अभ्यास प्रश्नों की सूची भी देंगे।
📘 दशमलव संख्याओं को घटाने की विधि (Subtraction of Decimal Numbers)
🔹 चरण-दर-चरण विधि:
🧭 Step 1: दशमलव बिंदु को एक रेखा में लाएँ
सभी संख्याओं को इस तरह लिखें कि दशमलव बिंदु (.) एक के नीचे एक सीध में हो।
🧭 Step 2: कम दशमलव अंकों वाली संख्याओं में ज़ीरो जोड़ें
ताकि दोनों संख्याओं में दशमलव के बाद अंकों की संख्या बराबर हो।
🧭 Step 3: घटाव की सामान्य विधि अपनाएँ
दशमलव के दाहिने से बाएँ की ओर घटाना शुरू करें। उधार (borrow) लेना आवश्यक हो सकता है।
🧭 Step 4: दशमलव बिंदु को सीधा नीचे उतारें
उत्तर में दशमलव को ठीक उसी स्थान पर रखें।
🔢 उदाहरण-1:
प्रश्न:
घटाइए: 7.85 – 2.4
7.85
- 2.40 ← (0 जोड़ा गया)
--------
5.45
✅ उत्तर: 5.45
🔢 उदाहरण-2:
प्रश्न:
घटाइए: 10 – 3.75
10.00 ← (दो दशमलव स्थान बनाए)
- 3.75
---------
6.25
✅ उत्तर: 6.25
🔢 उदाहरण-3:
प्रश्न:
घटाइए: 5.6 – 2.09
5.60
- 2.09
-------
3.51
✅ उत्तर: 3.51
🔢 उदाहरण-4:
प्रश्न:
घटाइए: 0.9 – 0.45
0.90
- 0.45
-------
0.45
✅ उत्तर: 0.45
🔢 उदाहरण-5:
प्रश्न:
घटाइए: 2.001 – 0.009
2.001
- 0.009
--------
1.992
✅ उत्तर: 1.992
🧪 अभ्यास के लिए 25 दशमलव घटाव प्रश्न
प्रश्नों की सूची:
- 7.5 – 3.2 = ?
- 5.6 – 2.4 = ?
- 9.75 – 4.5 = ?
- 12.0 – 7.25 = ?
- 3.6 – 1.1 = ?
- 10 – 3.75 = ?
- 4.44 – 2.22 = ?
- 6.5 – 1.25 = ?
- 8.0 – 0.08 = ?
- 2.02 – 1.01 = ?
- 0.9 – 0.3 = ?
- 0.75 – 0.25 = ?
- 5.55 – 3.33 = ?
- 10.1 – 0.01 = ?
- 100.5 – 99.5 = ?
- 25.25 – 4.5 = ?
- 0.5 – 0.25 = ?
- 7.07 – 2.02 = ?
- 11.11 – 1.11 = ?
- 1.0 – 0.5 = ?
- 13.35 – 4.65 = ?
- 6.666 – 3.333 = ?
- 2.05 – 1.04 = ?
- 15.9 – 0.001 = ?
- 1.000 – 0.999 = ?
✅ यदि आप चाहें तो:
- इन सभी का हल (Answer Key)
- PDF अभ्यास पुस्तिका (with space to solve)
- चित्रों सहित समझ और उच्च स्तर की चुनौतियाँ भी तैयार की जा सकती हैं।
क्या आप हल भी साथ में चाहते हैं या अलग PDF के रूप में अभ्यास संग्रह?
बिलकुल! नीचे दिए गए सभी 25 दशमलव घटाव प्रश्नों के सही उत्तर (Answer Key) प्रस्तुत हैं:
✅ दशमलव घटाव – हल सहित उत्तरमाला (Answer Key)
प्रश्न संख्या | प्रश्न | उत्तर |
---|---|---|
1 | 7.5 – 3.2 | 4.3 |
2 | 5.6 – 2.4 | 3.2 |
3 | 9.75 – 4.5 | 5.25 |
4 | 12.0 – 7.25 | 4.75 |
5 | 3.6 – 1.1 | 2.5 |
6 | 10 – 3.75 | 6.25 |
7 | 4.44 – 2.22 | 2.22 |
8 | 6.5 – 1.25 | 5.25 |
9 | 8.0 – 0.08 | 7.92 |
10 | 2.02 – 1.01 | 1.01 |
11 | 0.9 – 0.3 | 0.6 |
12 | 0.75 – 0.25 | 0.5 |
13 | 5.55 – 3.33 | 2.22 |
14 | 10.1 – 0.01 | 10.09 |
15 | 100.5 – 99.5 | 1.0 |
16 | 25.25 – 4.5 | 20.75 |
17 | 0.5 – 0.25 | 0.25 |
18 | 7.07 – 2.02 | 5.05 |
19 | 11.11 – 1.11 | 10.0 |
20 | 1.0 – 0.5 | 0.5 |
21 | 13.35 – 4.65 | 8.70 |
22 | 6.666 – 3.333 | 3.333 |
23 | 2.05 – 1.04 | 1.01 |
24 | 15.9 – 0.001 | 15.899 |
25 | 1.000 – 0.999 | 0.001 |
📌 नोट:
- सभी उत्तर दशमलव बिंदु सहित सटीक रूप से लिखे गए हैं।
- चाहें तो इनका विस्तृत हल (step-by-step working) या PDF पुस्तिका भी उपलब्ध कराई जा सकती है।
क्या आप चाहेंगे कि मैं इसका प्रिंटयोग्य PDF अभ्यास पत्र (हल सहित) बनाकर दूँ?
🔢 दशमलव के गुणा (Multiplication of Decimals) का सम्पूर्ण अध्ययन
🔹 दशमलव संख्याओं का गुणा क्या है?
दशमलव संख्याओं का गुणा करना सामान्य पूर्णांकों की तरह ही होता है, बस दशमलव बिंदु (decimal point) को सही स्थान पर लगाने की सावधानी रखनी होती है। गुणा के बाद हम केवल यह देखते हैं कि दोनों संख्याओं में कुल कितने दशमलव स्थान (decimal places) थे और उसी के अनुसार उत्तर में दशमलव लगाते हैं।
🧠 चरण-दर-चरण विधि (Step-by-step method)
- दशमलव बिंदु को हटा दें और संख्याओं को पूर्णांकों की तरह गुणा करें।
- दोनों संख्याओं में दशमलव के बाद कुल जितने अंक हैं, उतने अंक उत्तर में दाईं ओर से गिनकर दशमलव लगाएँ।
🔸 उदाहरण 1:
2.4 × 3.2 = ?
Step 1:
Ignore decimal → 24 × 32 = 768
Step 2:
2.4 → 1 decimal place
3.2 → 1 decimal place
Total = 1 + 1 = 2 decimal places
Final Answer:
7.68
🔸 उदाहरण 2:
1.25 × 0.4 = ?
Ignore decimal → 125 × 4 = 500
Decimal places:
1.25 = 2 places
0.4 = 1 place → Total = 3 places
Final Answer:
0.500 → या संक्षेप में 0.5
🔸 उदाहरण 3:
0.06 × 0.3 = ?
Ignore decimal → 6 × 3 = 18
Decimal places = 2 (0.06) + 1 (0.3) = 3
Answer:
0.018
✅ अभ्यास प्रश्न (25 Questions for Practice)
- 0.2 × 0.3 = ?
- 1.5 × 2.5 = ?
- 3.6 × 0.5 = ?
- 2.45 × 3 = ?
- 0.06 × 0.4 = ?
- 0.9 × 0.1 = ?
- 1.25 × 4 = ?
- 2.4 × 1.2 = ?
- 0.33 × 0.3 = ?
- 4.25 × 0.2 = ?
- 6.6 × 0.1 = ?
- 3.03 × 0.3 = ?
- 2.5 × 0.2 = ?
- 7.5 × 0.6 = ?
- 0.015 × 2 = ?
- 5 × 1.1 = ?
- 1.2 × 1.2 = ?
- 0.44 × 0.5 = ?
- 0.9 × 9 = ?
- 4.4 × 0.4 = ?
- 3.141 × 2 = ?
- 2.5 × 1.25 = ?
- 0.001 × 10 = ?
- 6.25 × 0.8 = ?
- 0.125 × 0.4 = ?
✅ उत्तर तालिका (Answer Key)
- 0.06
- 3.75
- 1.8
- 7.35
- 0.024
- 0.09
- 5
- 2.88
- 0.099
- 0.85
- 0.66
- 0.909
- 0.5
- 4.5
- 0.03
- 5.5
- 1.44
- 0.22
- 8.1
- 1.76
- 6.282
- 3.125
- 0.01
- 5
- 0.05
🧾 नोट:
- यदि उत्तर दशमलव के बाद शून्य आता है, तो आप चाहें तो उसे हटा सकते हैं (जैसे 0.500 → 0.5)।
- उत्तर में ज़रूरत हो तो दशमलव के बाद 2-3 स्थान तक रखना उचित है।
यदि आप चाहें तो हम अगला भाग "दशमलव में भाग (Division of Decimals)" भी इसी विस्तार और अभ्यास के साथ शुरू कर सकते हैं।
क्या मैं अगला भाग शुरू करूँ?
🔢 दशमलव का गुणा (Multiplication of Decimals) — विस्तारपूर्वक अध्ययन एवं अभ्यास 🔢
🔷 दशमलव का गुणा क्या है?
दशमलव का गुणा सामान्य अंकों की तरह ही किया जाता है, लेकिन अंतिम उत्तर में दशमलव बिंदु को सही स्थान पर रखने की एक महत्वपूर्ण प्रक्रिया होती है। इस प्रकार की गणना विशेष रूप से पैसे, माप, दूरी, और विज्ञान के मापन में अत्यधिक उपयोगी होती है।
🔷 दशमलव का गुणा करने की विधि:
👉 चरणबद्ध विधि:
- दशमलव को हटाकर संख्याओं को पूर्णांक की तरह लिख लें।
- पूर्णांकों का सामान्य गुणा करें।
- दोनों दशमलव संख्याओं में दशमलव के बाद जितने अंक हैं, उन्हें जोड़ें।
- गुणा के उत्तर में अंत से उतने अंक गिनकर दशमलव बिंदु लगाएं।
✳️ उदाहरण 1:
प्रश्न: 2.4 × 3.5 = ?
चरण 1: दशमलव हटाएँ: 24 × 35
चरण 2: गुणा करें:
24 × 35 = 840
चरण 3: दशमलव अंक गिनें:
2.4 में 1 अंक, 3.5 में 1 अंक → कुल 2 अंक
चरण 4: दशमलव लगाएँ:
840 → 8.40 ✅
उत्तर: 2.4 × 3.5 = 8.40
✳️ उदाहरण 2:
प्रश्न: 0.06 × 0.2 = ?
चरण 1: दशमलव हटाएँ: 6 × 2 = 12
चरण 2: दशमलव अंक:
0.06 (2 अंक), 0.2 (1 अंक) → कुल = 3
चरण 3: उत्तर में दशमलव लगाएँ:
12 → 0.012 ✅
उत्तर: 0.06 × 0.2 = 0.012
🧠 टिप्स:
- उत्तर में दशमलव बिंदु की सही स्थिति अत्यंत महत्वपूर्ण है।
- पहले संख्याएँ बिना दशमलव के गुणा करें, फिर दशमलव लगाएँ।
- जितना अधिक अभ्यास करेंगे, उतनी सहजता आएगी।
📝 अभ्यास प्रश्न (25 Decimal Multiplication Questions):
क्रम | प्रश्न |
---|---|
1 | 2.5 × 3 |
2 | 0.4 × 0.6 |
3 | 5.2 × 1.3 |
4 | 0.25 × 4 |
5 | 3.75 × 2 |
6 | 1.2 × 0.5 |
7 | 0.09 × 0.07 |
8 | 6.1 × 3.2 |
9 | 0.003 × 5 |
10 | 0.4 × 10 |
11 | 0.8 × 0.8 |
12 | 0.1 × 0.1 |
13 | 12.5 × 2.4 |
14 | 7.07 × 2 |
15 | 9.9 × 0.1 |
16 | 0.002 × 0.02 |
17 | 0.6 × 0.5 |
18 | 1.25 × 8 |
19 | 15.5 × 0.1 |
20 | 2.25 × 0.25 |
21 | 11.11 × 1.1 |
22 | 0.33 × 0.03 |
23 | 0.007 × 0.4 |
24 | 1.1 × 0.01 |
25 | 0.055 × 0.2 |
✅ उत्तरमाला (Answer Key):
क्रम | उत्तर |
---|---|
1 | 7.5 |
2 | 0.24 |
3 | 6.76 |
4 | 1.00 |
5 | 7.50 |
6 | 0.60 |
7 | 0.0063 |
8 | 19.52 |
9 | 0.015 |
10 | 4.0 |
11 | 0.64 |
12 | 0.01 |
13 | 30.0 |
14 | 14.14 |
15 | 0.99 |
16 | 0.00004 |
17 | 0.30 |
18 | 10.0 |
19 | 1.55 |
20 | 0.5625 |
21 | 12.221 |
22 | 0.0099 |
23 | 0.0028 |
24 | 0.011 |
25 | 0.011 |
❓ अब आप करें:
कक्षा में, प्रतियोगी परीक्षा में, या दैनिक जीवन में — जब भी दशमलव का गुणा आता है, तो अब आप पूर्णतः तैयार हैं!
यदि आप अगला विषय "➗ दशमलव का भाग (Division of Decimals)" पढ़ना चाहें, तो बताइए — मैं उसी प्रकार विस्तार और अभ्यास के साथ समझाऊँगा।
क्या मैं दशमलव के भाग की ओर बढ़ूँ?
दशमलव संख्याओं का भाग (Division of Decimal Numbers)
🔷 भाग (Division) क्या है?
भाग यानी किसी संख्या को बराबर भागों में बाँटना। जब हम दशमलव संख्याओं का भाग करते हैं, तो हम यह सुनिश्चित करते हैं कि हम दशमलव बिंदु (Decimal Point) की स्थिति को सही स्थान पर रखें और पूरे भाग की प्रक्रिया को सटीकता से करें।
✳️ दशमलव संख्या के भाग की मुख्य स्थितियाँ
- जब भाजक (Divisor) पूर्ण संख्या हो और भाग देने वाली संख्या दशमलव हो
- जब दोनों संख्याएँ दशमलव हों
- जब भागफल दशमलव में आता है (repeating या terminating decimal)
✅ महत्वपूर्ण नियम
- दशमलव को हटाने के लिए, भाग देने वाले और भाजक दोनों को 10, 100, 1000 आदि से गुणा करें, ताकि दोनों पूर्ण संख्याएँ बन जाएँ।
- फिर सामान्य भाग करें।
- अंत में दशमलव बिंदु को सही जगह पर रखें।
🔢 उदाहरण सहित समझाइए
📘 उदाहरण 1: 6.4 ÷ 2
हल: 6.4 को 2 से भाग देंगे
6.4 ÷ 2 = (64 ÷ 2) ÷ 10
= 32 ÷ 10
= 3.2
✅ उत्तर: 3.2
📘 उदाहरण 2: 0.48 ÷ 0.6
दोनों दशमलव हैं। हम दोनों को 10 से गुणा करते हैं:
0.48 ÷ 0.6 = (0.48 × 10) ÷ (0.6 × 10)
= 4.8 ÷ 6
= 0.8
✅ उत्तर: 0.8
📘 उदाहरण 3: 5 ÷ 0.2
= (5 × 10) ÷ (0.2 × 10)
= 50 ÷ 2
= 25
✅ उत्तर: 25
📘 उदाहरण 4: 2.5 ÷ 0.5
(2.5 × 10) ÷ (0.5 × 10) = 25 ÷ 5 = 5
✅ उत्तर: 5
✍️ अभ्यास प्रश्न (25 Decimal Division Questions)
👉 सभी प्रश्न हल करने के लिए दशमलव स्थान का ध्यान रखें।
क्र. | प्रश्न |
---|---|
1 | 4.5 ÷ 5 |
2 | 0.6 ÷ 2 |
3 | 6.3 ÷ 0.9 |
4 | 1.2 ÷ 0.2 |
5 | 3.75 ÷ 1.5 |
6 | 5 ÷ 0.25 |
7 | 0.09 ÷ 0.3 |
8 | 2.1 ÷ 0.7 |
9 | 6.48 ÷ 1.2 |
10 | 0.72 ÷ 0.08 |
11 | 1.44 ÷ 0.6 |
12 | 4.2 ÷ 1.4 |
13 | 2.5 ÷ 5 |
14 | 10 ÷ 0.1 |
15 | 0.64 ÷ 0.4 |
16 | 0.36 ÷ 0.6 |
17 | 5.5 ÷ 1.1 |
18 | 0.45 ÷ 0.05 |
19 | 7.2 ÷ 0.8 |
20 | 3.6 ÷ 0.6 |
21 | 9.9 ÷ 0.3 |
22 | 0.48 ÷ 0.12 |
23 | 0.06 ÷ 0.3 |
24 | 1.5 ÷ 0.5 |
25 | 2.4 ÷ 0.2 |
🔓 उत्तरमाला (Answer Key)
क्र. | उत्तर | क्र. | उत्तर | |
---|---|---|---|---|
1 | 0.9 | 14 | 100 | |
2 | 0.3 | 15 | 1.6 | |
3 | 7 | 16 | 0.6 | |
4 | 6 | 17 | 5 | |
5 | 2.5 | 18 | 9 | |
6 | 20 | 19 | 9 | |
7 | 0.3 | 20 | 6 | |
8 | 3 | 21 | 33 | |
9 | 5.4 | 22 | 4 | |
10 | 9 | 23 | 0.2 | |
11 | 2.4 | 24 | 3 | |
12 | 3 | 25 | 12 | |
13 | 0.5 |
📌 निष्कर्ष:
- दशमलव विभाजन में बस बिंदु का स्थान पहचानना और स्थानांतरित करना आना चाहिए।
- अभ्यास से यह प्रक्रिया आसान हो जाती है।
अगर आप चाहें, तो अगला भाग "दशमलव से संबंधित शब्द समस्याएँ (Word Problems)" या "मिश्रित प्रकार के प्रश्न" पर भी ले सकते हैं।
क्या अब मैं मिश्रित दशमलव जोड़-घटाव-गुणा-भाग के प्रश्न शुरू करूँ?
यह रहे पहले 25 दशमलव संख्या के भाग (Division of Decimal Numbers) से संबंधित प्रश्नों के उत्तर (Answer Key):
🔢 Answer Key (1–25) – Decimal Division
क्रमांक | प्रश्न | उत्तर |
---|---|---|
1 | 6.4 ÷ 2 | 3.2 |
2 | 12.6 ÷ 3 | 4.2 |
3 | 8.1 ÷ 3 | 2.7 |
4 | 15.5 ÷ 5 | 3.1 |
5 | 0.9 ÷ 3 | 0.3 |
6 | 4.5 ÷ 1.5 | 3 |
7 | 10 ÷ 2.5 | 4 |
8 | 7.2 ÷ 0.6 | 12 |
9 | 9.6 ÷ 0.8 | 12 |
10 | 3.3 ÷ 0.3 | 11 |
11 | 0.81 ÷ 0.09 | 9 |
12 | 1.2 ÷ 0.04 | 30 |
13 | 6.25 ÷ 2.5 | 2.5 |
14 | 12.25 ÷ 0.5 | 24.5 |
15 | 0.75 ÷ 0.25 | 3 |
16 | 2.4 ÷ 1.2 | 2 |
17 | 4.8 ÷ 0.6 | 8 |
18 | 7.5 ÷ 1.5 | 5 |
19 | 1.44 ÷ 0.12 | 12 |
20 | 0.36 ÷ 0.06 | 6 |
21 | 9 ÷ 0.3 | 30 |
22 | 2.25 ÷ 0.25 | 9 |
23 | 5.04 ÷ 0.4 | 12.6 |
24 | 3.57 ÷ 0.3 | 11.9 |
25 | 6.75 ÷ 0.25 | 27 |
यदि आप चाहें तो मैं इन सभी प्रश्नों का हल भी स्टेप-बाय-स्टेप करके समझा सकता हूँ।
अब बताइए — अगला भाग शुरू करें क्या?
जैसे दशमलव संख्याओं की तुलना, दशमलव को भिन्न में बदलना, दशमलव और प्रतिशत के बीच संबंध आदि?
बिलकुल! दशमलव संख्याओं का भाग (division of decimal numbers) कैसे किया जाता है, इसे हम स्टेप-बाय-स्टेप उदाहरणों के साथ समझेंगे।
🔷 दशमलव संख्याओं का भाग करने की विधि (Steps):
🌟 सामान्य तरीका (जब भाज्य या भाजक दशमलव में हों)
Step 1: अगर भाजक (divisor) दशमलव में है, तो दशमलव हटाने के लिए उसे 10, 100, 1000... से गुणा करें ताकि वह पूर्णांक बन जाए।
Step 2: वही गुणन भाज्य (dividend) पर भी करें, ताकि संतुलन बना रहे।
Step 3: अब सामान्य भाग की तरह भाग करें।
✍🏻 उदाहरण 1:
प्रश्न: 6.4 ÷ 0.2 = ?
Step 1: भाजक = 0.2 → इसे पूर्णांक बनाने के लिए ×10 करें
👉 0.2 × 10 = 2
Step 2: भाज्य = 6.4 → इसे भी ×10 करें
👉 6.4 × 10 = 64
Step 3: अब 64 ÷ 2 = ✅ 32
📌 उत्तर: 6.4 ÷ 0.2 = 32
✍🏻 उदाहरण 2:
प्रश्न: 5.25 ÷ 0.05 = ?
Step 1: भाजक = 0.05 → इसे पूर्णांक बनाने के लिए ×100 करें
👉 0.05 × 100 = 5
Step 2: भाज्य = 5.25 → इसे भी ×100 करें
👉 5.25 × 100 = 525
Step 3: अब 525 ÷ 5 = ✅ 105
📌 उत्तर: 5.25 ÷ 0.05 = 105
✍🏻 उदाहरण 3:
प्रश्न: 0.75 ÷ 0.25 = ?
Step 1: दोनों को 100 से गुणा करें
0.75 × 100 = 75
0.25 × 100 = 25
अब 75 ÷ 25 = ✅ 3
📌 उत्तर: 0.75 ÷ 0.25 = 3
✍🏻 उदाहरण 4:
प्रश्न: 4.2 ÷ 0.7 = ?
0.7 को पूर्णांक बनाने के लिए ×10
→ 0.7 × 10 = 7
→ 4.2 × 10 = 42
अब 42 ÷ 7 = ✅ 6
📌 उत्तर: 4.2 ÷ 0.7 = 6
✍🏻 उदाहरण 5:
प्रश्न: 0.056 ÷ 0.007 = ?
दोनों को 1000 से गुणा करें
→ 0.056 × 1000 = 56
→ 0.007 × 1000 = 7
अब 56 ÷ 7 = ✅ 8
📌 उत्तर: 0.056 ÷ 0.007 = 8
🔰 25 अभ्यास प्रश्न (Decimal Division Practice Questions)
क्रमांक | प्रश्न |
---|---|
1 | 2.4 ÷ 0.2 = ? |
2 | 3.6 ÷ 0.3 = ? |
3 | 0.81 ÷ 0.09 = ? |
4 | 7.2 ÷ 0.6 = ? |
5 | 5.0 ÷ 0.25 = ? |
6 | 9.1 ÷ 0.7 = ? |
7 | 4.8 ÷ 0.4 = ? |
8 | 10.5 ÷ 0.5 = ? |
9 | 6.3 ÷ 0.9 = ? |
10 | 1.2 ÷ 0.1 = ? |
11 | 0.66 ÷ 0.06 = ? |
12 | 2.5 ÷ 0.5 = ? |
13 | 7.5 ÷ 0.25 = ? |
14 | 0.27 ÷ 0.03 = ? |
15 | 1.44 ÷ 0.12 = ? |
16 | 0.36 ÷ 0.06 = ? |
17 | 8.4 ÷ 0.7 = ? |
18 | 0.99 ÷ 0.11 = ? |
19 | 6.75 ÷ 0.25 = ? |
20 | 12.6 ÷ 0.6 = ? |
21 | 3.3 ÷ 0.3 = ? |
22 | 2.7 ÷ 0.9 = ? |
23 | 0.56 ÷ 0.07 = ? |
24 | 0.64 ÷ 0.08 = ? |
25 | 1.05 ÷ 0.15 = ? |
✅ Answer Key (उत्तर तालिका):
क्रमांक | उत्तर |
---|---|
1 | 12 |
2 | 12 |
3 | 9 |
4 | 12 |
5 | 20 |
6 | 13 |
7 | 12 |
8 | 21 |
9 | 7 |
10 | 12 |
11 | 11 |
12 | 5 |
13 | 30 |
14 | 9 |
15 | 12 |
16 | 6 |
17 | 12 |
18 | 9 |
19 | 27 |
20 | 21 |
21 | 11 |
22 | 3 |
23 | 8 |
24 | 8 |
25 | 7 |
अगर आप चाहें तो मैं इन सभी 25 प्रश्नों को भी स्टेप-बाय-स्टेप हल करके दिखा सकता हूँ।
क्या आप ऐसा चाहते हैं?
बहुत अच्छा! अब हम मिश्रित दशमलव आधारित प्रश्नों (जोड़, घटाव, गुणा, भाग) की ओर बढ़ते हैं।
इसमें हम आपको पहले विभिन्न प्रकार के प्रश्न देंगे, फिर उनका Step-by-Step हल और अंत में Answer Key भी देंगे।
🧮 मिश्रित दशमलव प्रश्न – अभ्यास (25 प्रश्न)
🔢 भाग-1: जोड़, घटाव, गुणा, भाग – मिश्रित
- 12.35 + 4.008
- 5.75 - 2.48
- 4.6 × 3.2
- 36.48 ÷ 6
- 1.25 + 3.075 + 0.85
- 10.5 - 2.305
- 7.2 × 0.6
- 9.75 ÷ 1.5
- 25.25 + 4.4 - 2.15
- 8.16 - 3.7 + 1.89
- 0.8 × 0.4
- 15.625 ÷ 2.5
- 6.5 + 2.75 × 2
- (10.2 - 4.5) × 3
- 5.6 ÷ 0.2
- 7.28 + 1.43 - 2.61
- 12.5 × 0.4
- 13.2 ÷ 0.6
- 2.4 + 3.6 × 0.5
- 16.8 ÷ 4 + 2.1
- 3.75 + 4.25 × 2 - 1.5
- 9.6 - 3.25 × 2
- 5.1 + 1.1 - 3.3 × 2
- (4.5 + 3.3) ÷ 1.2
- (6.4 × 2.5) - (5.2 ÷ 2)
✅ उत्तर सहित Step-by-Step हल
हम इन सभी प्रश्नों का विस्तार से Step-by-Step हल अभी से देना शुरू करते हैं।
👉 चलिए पहले 1 से 5 तक के प्रश्नों का हल देखें:
1. 12.35 + 4.008
Step-1: दशमलव स्थान बराबर करें
→ 12.350 + 4.008
Step-2: अब जोड़ें
→ 16.358 ✅
2. 5.75 - 2.48
Step-1: दशमलव बराबर हैं
→ 5.75 - 2.48
Step-2: घटाएँ
→ 3.27 ✅
3. 4.6 × 3.2
Step-1: Ignore decimal → 46 × 32 = 1472
Step-2: कुल दशमलव स्थान = 2
→ 14.72 ✅
4. 36.48 ÷ 6
Step-1: Divide normally
→ 36.48 ÷ 6 = 6.08 ✅
5. 1.25 + 3.075 + 0.85
Step-1: बराबर स्थान कर लें
→ 1.250 + 3.075 + 0.850
→ Add → 5.175 ✅
यदि आप चाहें, तो अगले 5 प्रश्न (6–10) अभी दे सकता हूँ।
क्या मैं आगे बढ़ाऊँ?
आप कहें तो साथ-साथ PDF फॉर्म में भी दे सकता हूँ।
बहुत अच्छा! अब हम मिश्रित दशमलव आधारित प्रश्नों (जोड़, घटाव, गुणा, भाग) की ओर बढ़ते हैं।
इसमें हम आपको पहले विभिन्न प्रकार के प्रश्न देंगे, फिर उनका Step-by-Step हल और अंत में Answer Key भी देंगे।
🧮 मिश्रित दशमलव प्रश्न – अभ्यास (25 प्रश्न)
🔢 भाग-1: जोड़, घटाव, गुणा, भाग – मिश्रित
- 12.35 + 4.008
- 5.75 - 2.48
- 4.6 × 3.2
- 36.48 ÷ 6
- 1.25 + 3.075 + 0.85
- 10.5 - 2.305
- 7.2 × 0.6
- 9.75 ÷ 1.5
- 25.25 + 4.4 - 2.15
- 8.16 - 3.7 + 1.89
- 0.8 × 0.4
- 15.625 ÷ 2.5
- 6.5 + 2.75 × 2
- (10.2 - 4.5) × 3
- 5.6 ÷ 0.2
- 7.28 + 1.43 - 2.61
- 12.5 × 0.4
- 13.2 ÷ 0.6
- 2.4 + 3.6 × 0.5
- 16.8 ÷ 4 + 2.1
- 3.75 + 4.25 × 2 - 1.5
- 9.6 - 3.25 × 2
- 5.1 + 1.1 - 3.3 × 2
- (4.5 + 3.3) ÷ 1.2
- (6.4 × 2.5) - (5.2 ÷ 2)
✅ उत्तर सहित Step-by-Step हल
हम इन सभी प्रश्नों का विस्तार से Step-by-Step हल अभी से देना शुरू करते हैं।
👉 चलिए पहले 1 से 5 तक के प्रश्नों का हल देखें:
1. 12.35 + 4.008
Step-1: दशमलव स्थान बराबर करें
→ 12.350 + 4.008
Step-2: अब जोड़ें
→ 16.358 ✅
2. 5.75 - 2.48
Step-1: दशमलव बराबर हैं
→ 5.75 - 2.48
Step-2: घटाएँ
→ 3.27 ✅
3. 4.6 × 3.2
Step-1: Ignore decimal → 46 × 32 = 1472
Step-2: कुल दशमलव स्थान = 2
→ 14.72 ✅
4. 36.48 ÷ 6
Step-1: Divide normally
→ 36.48 ÷ 6 = 6.08 ✅
5. 1.25 + 3.075 + 0.85
Step-1: बराबर स्थान कर लें
→ 1.250 + 3.075 + 0.850
→ Add → 5.175 ✅
यदि आप चाहें, तो अगले 5 प्रश्न (6–10) अभी दे सकता हूँ।
क्या मैं आगे बढ़ाऊँ?
आप कहें तो साथ-साथ PDF फॉर्म में भी दे सकता हूँ।
बिलकुल! नीचे मिश्रित दशमलव प्रश्नों (जोड़, घटाव, गुणा, भाग) के प्रश्न 11 से 25 तक के स्टेप-बाय-स्टेप हल दिए गए हैं:
🔟प्रश्न 11:
1.75 + 2.9 - 0.85 = ?
Step-by-step:
1.75 + 2.9 = 4.65
4.65 - 0.85 = 3.80 ✅
🔟प्रश्न 12:
4.8 × 0.5 = ?
Step-by-step:
Ignore decimal: 48 × 5 = 240
अब, कुल दशमलव स्थान = 1 (4.8) + 1 (0.5) = 2
तो उत्तर = 2.40 ✅
🔟प्रश्न 13:
9.6 ÷ 0.4 = ?
Step-by-step:
Multiply both by 10 to remove decimal:
(9.6 × 10) ÷ (0.4 × 10) = 96 ÷ 4 = 24 ✅
🔟प्रश्न 14:
3.5 + 1.75 × 2 = ?
Step-by-step:
पहले गुणा: 1.75 × 2 = 3.5
अब जोड़: 3.5 + 3.5 = 7.00 ✅
🔟प्रश्न 15:
(6.4 - 2.1) × 1.5 = ?
Step-by-step:
6.4 - 2.1 = 4.3
4.3 × 1.5 =
Ignore decimal: 43 × 15 = 645
Decimal places = 2 → 6.45 ✅
🔟प्रश्न 16:
5.25 ÷ 2 = ?
Step-by-step:
Divide normally:
5.25 ÷ 2 = 2.625 ✅
🔟प्रश्न 17:
7.8 - (2.4 + 1.6) = ?
Step-by-step:
2.4 + 1.6 = 4.0
7.8 - 4.0 = 3.8 ✅
🔟प्रश्न 18:
6.25 × 0.2 = ?
Step-by-step:
Ignore decimal: 625 × 2 = 1250
Decimal: Total 3 → 1.250 ✅
🔟प्रश्न 19:
4.5 + 3.3 ÷ 1.1 = ?
Step-by-step:
3.3 ÷ 1.1 = 3
4.5 + 3 = 7.5 ✅
🔟प्रश्न 20:
8.2 - 3.5 × 2 = ?
Step-by-step:
3.5 × 2 = 7.0
8.2 - 7.0 = 1.2 ✅
🔟प्रश्न 21:
(7.2 + 2.8) ÷ 2 = ?
Step-by-step:
7.2 + 2.8 = 10.0
10.0 ÷ 2 = 5.0 ✅
🔟प्रश्न 22:
0.25 × 0.4 = ?
Step-by-step:
Ignore decimal: 25 × 4 = 100
Decimal places = 4 → 0.1000 → 0.10 ✅
🔟प्रश्न 23:
3.6 ÷ 1.2 = ?
Step-by-step:
Multiply both by 10: 36 ÷ 12 = 3.0 ✅
🔟प्रश्न 24:
1.5 + 2.25 - 0.75 = ?
Step-by-step:
1.5 + 2.25 = 3.75
3.75 - 0.75 = 3.00 ✅
🔟प्रश्न 25:
6.3 - (1.2 × 2.5) = ?
Step-by-step:
1.2 × 2.5 =
12 × 25 = 300 → 3.00
6.3 - 3.0 = 3.3 ✅
✅ यदि आप चाहें तो मैं इनका एक PDF अभ्यास पत्र भी बना सकता हूँ।
अब क्या मैं अगला भाग — "दशमलव शब्द समस्याएँ (Decimal Word Problems)" — शुरू करूँ?
यहाँ दशमलव पर आधारित चारों प्रमुख गणनात्मक क्रियाओं — जोड़, घटाव, गुणा, और भाग — पर आधारित शब्द समस्याओं (Word Problems) के लिए 25-25 प्रश्न दिए जा रहे हैं, प्रत्येक के उत्तर सहित (Answer Key)।
🟢 1. दशमलव पर आधारित जोड़ की 25 शब्द समस्याएँ
क्रम | प्रश्न | उत्तर |
---|---|---|
1 | रीता के पास 12.35 लीटर दूध है और उसने 8.65 लीटर और खरीदा। उसके पास कुल कितना दूध हो गया? | 21.00 लीटर |
2 | एक डिब्बे में 3.75 किलोग्राम चीनी है, दूसरे में 4.85 किलोग्राम। दोनों को मिलाने पर कुल कितना वजन होगा? | 8.60 किग्रा |
3 | रमेश ने 45.25 रुपये की सब्जी खरीदी और 23.75 रुपये की फल। कुल खर्च? | 69.00 रुपये |
4 | एक पाइप से हर घंटे 0.75 लीटर पानी टपकता है। 5 घंटे में कितना पानी टपकेगा? | 3.75 लीटर |
5 | मीना ने 2.50 किमी और 3.40 किमी पैदल चली। कुल कितनी दूरी चली? | 5.90 किमी |
… | … | … |
25 | दो वस्तुओं का वजन क्रमशः 15.25 किग्रा और 9.75 किग्रा है। कुल वजन? | 25.00 किग्रा |
🔵 2. दशमलव पर आधारित घटाव की 25 शब्द समस्याएँ
क्रम | प्रश्न | उत्तर |
---|---|---|
1 | एक डिब्बे में 9.75 लीटर पानी था। 4.25 लीटर निकाल लिया गया। शेष कितना? | 5.50 लीटर |
2 | किसी छात्र को 19.25 रुपये मिले थे, उसने 11.75 रुपये खर्च कर दिए। अब कितने बचे? | 7.50 रुपये |
3 | राधा ने 5.00 किमी की यात्रा की, जिसमें से 3.75 किमी बस से की। पैदल कितनी चली? | 1.25 किमी |
4 | एक पाइप से प्रति मिनट 2.50 लीटर पानी आता है। कुछ कारणों से अब 1.75 लीटर आ रहा है। कमी कितनी हुई? | 0.75 लीटर |
… | … | … |
25 | किसी बैग का वजन 25.75 किग्रा था। उसमें से 12.50 किग्रा निकाल लिया गया। शेष वजन? | 13.25 किग्रा |
🟣 3. दशमलव पर आधारित गुणा की 25 शब्द समस्याएँ
क्रम | प्रश्न | उत्तर |
---|---|---|
1 | एक सेब का वजन 0.25 किग्रा है। 8 सेबों का कुल वजन? | 2.00 किग्रा |
2 | एक लीटर दूध की कीमत 42.75 रुपये है। 4 लीटर की कीमत? | 171.00 रुपये |
3 | एक छात्र हर दिन 1.50 घंटे पढ़ाई करता है। 7 दिन में कितने घंटे? | 10.50 घंटे |
4 | एक किलोमीटर में 1.60934 मील होते हैं। 5 किमी में कितनी मील? | 8.0467 मील |
… | … | … |
25 | एक वस्तु की कीमत 12.75 रुपये है। 12 वस्तुओं की कीमत? | 153.00 रुपये |
🔴 4. दशमलव पर आधारित भाग की 25 शब्द समस्याएँ
क्रम | प्रश्न | उत्तर |
---|---|---|
1 | 9.00 लीटर दूध को 3 बोतलों में बराबर बाँटना है। प्रत्येक में कितना होगा? | 3.00 लीटर |
2 | 45.60 रुपये को 4 छात्रों में बराबर बाँटा गया। प्रत्येक को कितना मिला? | 11.40 रुपये |
3 | 6.30 किमी को 3 दिनों में समान दूरी तय की गई। प्रतिदिन कितनी दूरी चली गई? | 2.10 किमी |
4 | एक रोटी का वजन 1.25 किग्रा है। 5 रोटियाँ बनाने के लिए कुल कितना आटा चाहिए? | 6.25 किग्रा |
… | … | … |
25 | 72.00 लीटर पेट्रोल 8 वाहनों में बराबर डाला गया। प्रत्येक को कितना मिला? | 9.00 लीटर |
यदि आप चाहें तो इनमें से प्रत्येक वर्ग (जोड़/घटाव/गुणा/भाग) के स्टेप-बाय-स्टेप हल और स्पष्टीकरण भी दूँ?
या फिर आप चाहें तो इन पर आधारित प्रैक्टिस वर्कशीट (PDF या Printable) के रूप में भी तैयार कर सकता हूँ।
बताएँ, आप क्या चाहेंगे?
यह रहे दशमलव पर आधारित जोड़ की 25 शब्द समस्याएँ (Word Problems with Decimals – Addition Based), उत्तर सहित (Answer Key):
🔢 1 से 25: दशमलव जोड़ शब्द समस्याएँ (Decimal Addition Word Problems)
-
रानी ने बाज़ार से 12.75 ₹ की किताब और 8.50 ₹ की पेन खरीदी। कुल खर्च कितना हुआ?
✅ उत्तर: ₹21.25 -
एक बगीचे में 15.45 मीटर लंबा रास्ता और 4.55 मीटर लंबा पुल है। कुल लंबाई?
✅ उत्तर: 20.00 मीटर -
एक बॉटल में 1.250 लीटर दूध था, उसमें 0.875 लीटर और डाला गया। कुल कितना दूध?
✅ उत्तर: 2.125 लीटर -
रवि ने सुबह 3.5 किमी और शाम को 4.25 किमी दौड़ लगाई। कुल दूरी?
✅ उत्तर: 7.75 किमी -
माया के पास ₹23.75 थे, और उसके पापा ने ₹50.25 और दिए। अब कुल पैसे?
✅ उत्तर: ₹74.00 -
एक रॉड की लंबाई 6.3 मीटर और दूसरी की 2.7 मीटर है। कुल?
✅ उत्तर: 9.0 मीटर -
सिम्मी ने 0.95 घंटे पढ़ाई की, फिर 1.25 घंटे होमवर्क किया। कुल समय?
✅ उत्तर: 2.20 घंटे -
एक छात्र ने गणित में 45.75 अंक और विज्ञान में 39.25 अंक पाए। कुल?
✅ उत्तर: 85.00 अंक -
एक मोबाइल का दाम ₹9,999.99 है, और कवर का ₹250.01। कुल खर्च?
✅ उत्तर: ₹10,250.00 -
मीना ने 1.5 लीटर पानी पिया और फिर 2.25 लीटर। कुल पानी?
✅ उत्तर: 3.75 लीटर -
ट्रेन ने पहले दिन 352.65 किमी और दूसरे दिन 400.35 किमी चली। कुल दूरी?
✅ उत्तर: 753.00 किमी -
अमित का वजन 45.5 किग्रा था, फिर 1.75 किग्रा बढ़ गया। नया वजन?
✅ उत्तर: 47.25 किग्रा -
दो बैगों का वजन 12.25 किग्रा और 15.75 किग्रा है। कुल?
✅ उत्तर: 28.00 किग्रा -
एक स्टूडेंट ने 0.55 घंटे पढ़ा और 0.65 घंटे लिखा। कुल समय?
✅ उत्तर: 1.20 घंटे -
एक गिलास में 250.50 ml पानी और दूसरे में 125.25 ml है। कुल?
✅ उत्तर: 375.75 ml -
रमेश ने ₹5.55 खर्च किए और ₹7.45 फिर खर्च किए। कुल खर्च?
✅ उत्तर: ₹13.00 -
एक पाइप से 32.5 लीटर पानी और दूसरे से 17.5 लीटर निकला। कुल?
✅ उत्तर: 50.0 लीटर -
एक कहानी 3.75 घंटे की है और दूसरी 2.50 घंटे की। कुल समय?
✅ उत्तर: 6.25 घंटे -
एक आदमी ने ₹75.75 कमाए और ₹24.25 बोनस मिला। कुल आय?
✅ उत्तर: ₹100.00 -
साइकिल से 6.6 किमी और पैदल 3.4 किमी चले। कुल दूरी?
✅ उत्तर: 10.0 किमी -
एक परीक्षा में 78.5 अंक मिले, और प्रोजेक्ट में 21.5 अंक। कुल?
✅ उत्तर: 100.00 अंक -
दुकानदार ने ₹152.45 कमाए और ₹47.55 बाद में। कुल?
✅ उत्तर: ₹200.00 -
5.75 मीटर और 2.25 मीटर की दो लकड़ियाँ। कुल?
✅ उत्तर: 8.00 मीटर -
एक फूलदान में 1.875 लीटर पानी है, और 0.625 लीटर और डाला गया। कुल?
✅ उत्तर: 2.50 लीटर -
एक बच्चा 0.85 घंटा पढ़ा और 0.65 घंटा टीवी देखा। कुल समय?
✅ उत्तर: 1.50 घंटे
अगर आप चाहें, तो मैं अगला सेट “घटाव की शब्द समस्याएं (25)”, फिर “गुणा” और अंत में “भाग” भी इसी क्रम में दूँ?
क्या मैं आगे बढ़ूँ?
यहाँ दशमलव पर आधारित जोड़ (Addition) शब्द समस्याओं के 25 प्रश्न दिए गए हैं, जिनमें दैनिक जीवन की स्थितियाँ शामिल हैं। प्रत्येक प्रश्न के नीचे उसका उत्तर (Answer Key) भी दिया गया है।
🔢 भाग: दशमलव जोड़ पर आधारित 25 शब्द समस्याएँ
1. राधा के पास 2.75 लीटर दूध है और उसने 1.30 लीटर और दूध खरीदा। अब उसके पास कुल कितना दूध है?
उत्तर: 2.75 + 1.30 = 4.05 लीटर
2. एक पाइप से 5.2 लीटर पानी टैंक में आया और दूसरे से 3.75 लीटर। कुल कितना पानी आया?
उत्तर: 5.2 + 3.75 = 8.95 लीटर
3. मोहन ने 2.55 किमी साइकिल चलाई और फिर 4.8 किमी पैदल चला। कुल दूरी कितनी हुई?
उत्तर: 2.55 + 4.8 = 7.35 किमी
4. एक बॉटल में 1.25 लीटर जूस था और दूसरी में 0.95 लीटर। दोनों को मिलाने पर कितना जूस हुआ?
उत्तर: 1.25 + 0.95 = 2.20 लीटर
5. एक छात्र ने पहले दिन 3.5 घंटे पढ़ाई की, और दूसरे दिन 2.25 घंटे। कुल पढ़ाई कितनी हुई?
उत्तर: 3.5 + 2.25 = 5.75 घंटे
6. एक दवा की पहली खुराक 1.2 मिली थी और दूसरी 0.85 मिली। कुल खुराक कितनी हुई?
उत्तर: 1.2 + 0.85 = 2.05 मिलीलीटर
7. मीना ने एक फल 1.45 किग्रा और दूसरा 2.3 किग्रा खरीदा। कुल वजन कितना हुआ?
उत्तर: 1.45 + 2.3 = 3.75 किग्रा
8. राम की ऊंचाई 1.65 मीटर है और श्याम की 1.7 मीटर। दोनों की ऊंचाई मिलाकर कितनी हुई?
उत्तर: 1.65 + 1.7 = 3.35 मीटर
9. एक बॉटल में 0.75 लीटर दूध है और दूसरी में 1.05 लीटर। कुल दूध?
उत्तर: 0.75 + 1.05 = 1.80 लीटर
10. एक महिला ने 2.2 किग्रा सब्जी और 3.35 किग्रा फल खरीदे। कुल वजन?
उत्तर: 2.2 + 3.35 = 5.55 किग्रा
11. 3.5 किमी दौड़ने के बाद रोहन ने और 1.25 किमी दौड़ लगाई। कुल दूरी?
उत्तर: 3.5 + 1.25 = 4.75 किमी
12. एक व्यक्ति ने ₹35.75 और ₹28.50 खर्च किए। कुल खर्च?
उत्तर: ₹35.75 + ₹28.50 = ₹64.25
13. पायल की किताब 1.5 किग्रा और उसकी नोटबुक 0.65 किग्रा है। कुल वजन?
उत्तर: 1.5 + 0.65 = 2.15 किग्रा
14. गाड़ी ने पहले 5.55 लीटर और फिर 3.25 लीटर डीजल भरा। कुल ईंधन?
उत्तर: 5.55 + 3.25 = 8.80 लीटर
15. राहुल ने ₹12.45 की मिठाई और ₹9.55 की नमकीन खरीदी। कुल बिल?
उत्तर: ₹12.45 + ₹9.55 = ₹22.00
16. पानी की एक बाल्टी में 6.75 लीटर और दूसरी में 3.15 लीटर पानी है। कुल पानी?
उत्तर: 6.75 + 3.15 = 9.90 लीटर
17. रीना ने 1.75 घंटा होमवर्क किया और 2.3 घंटा पढ़ाई की। कुल समय?
उत्तर: 1.75 + 2.3 = 4.05 घंटे
18. एक पैकेट का वज़न 2.55 किग्रा और दूसरा 1.85 किग्रा है। कुल वजन?
उत्तर: 2.55 + 1.85 = 4.40 किग्रा
19. एक दुकान ने ₹255.75 कमाए और दूसरे दिन ₹275.35। कुल कमाई?
उत्तर: ₹255.75 + ₹275.35 = ₹531.10
20. एक ट्रेन ने 120.25 किमी और फिर 185.75 किमी की यात्रा की। कुल दूरी?
उत्तर: 120.25 + 185.75 = 306.00 किमी
21. एक टैंक में पहले से 14.5 लीटर पानी था, उसमें और 6.5 लीटर भर गया। कुल पानी?
उत्तर: 14.5 + 6.5 = 21.00 लीटर
22. एक विद्यार्थी को 18.25 अंक मिले और दूसरे टेस्ट में 19.75 अंक। कुल अंक?
उत्तर: 18.25 + 19.75 = 38.00 अंक
23. दो डिब्बों का वज़न क्रमशः 2.75 किग्रा और 3.25 किग्रा है। कुल वजन?
उत्तर: 2.75 + 3.25 = 6.00 किग्रा
24. एक नाव ने 7.5 किमी और फिर 8.75 किमी दूरी तय की। कुल यात्रा?
उत्तर: 7.5 + 8.75 = 16.25 किमी
25. राधिका के पास ₹135.65 हैं और उसने ₹64.35 और जोड़ लिए। अब उसके पास कितने पैसे हैं?
उत्तर: ₹135.65 + ₹64.35 = ₹200.00
यदि आप चाहें तो:
- अगला सेट घटाव पर आधारित शब्द समस्याएँ (25 प्रश्न)
- फिर गुणा पर आधारित (25 प्रश्न)
- और भाग पर आधारित (25 प्रश्न) भी इसी क्रम में दे सकता हूँ।
क्या अब मैं घटाव वाले प्रश्न शुरू करूँ?
यहाँ दशमलव पर आधारित "घटाव (Subtraction)" की 25 शब्द समस्याएँ दी जा रही हैं, जिनका उद्देश्य छात्रों को दैनिक जीवन से जुड़े प्रसंगों में दशमलव घटाव का अभ्यास कराना है। प्रत्येक प्रश्न के साथ उत्तर भी दिया गया है।
🔢 दशमलव पर आधारित घटाव - 25 शब्द समस्याएँ
🟠 प्रश्न 1:
रीमा के पास 15.75 रुपये थे। उसने 8.50 रुपये की पेंसिल खरीदी। अब उसके पास कितने रुपये बचे?
📌 उत्तर:
15.75 − 8.50 = 7.25 रुपये
🟠 प्रश्न 2:
एक बोतल में 2.5 लीटर पानी था। उसमें से 1.75 लीटर पानी निकाल लिया गया। अब बोतल में कितना पानी बचा?
📌 उत्तर:
2.5 − 1.75 = 0.75 लीटर
🟠 प्रश्न 3:
अंकिता ने 12.65 मीटर कपड़ा खरीदा। उसने 5.20 मीटर कपड़ा उपयोग कर लिया। अब कितना कपड़ा बचा?
📌 उत्तर:
12.65 − 5.20 = 7.45 मीटर
🟠 प्रश्न 4:
एक बाल्टी में 18.8 लीटर दूध था। उसमें से 9.45 लीटर दूध निकाल लिया गया। शेष दूध कितना है?
📌 उत्तर:
18.8 − 9.45 = 9.35 लीटर
🟠 प्रश्न 5:
नरेश के पास 50.00 रुपये थे। उसने 34.75 रुपये खर्च कर दिए। अब उसके पास कितने रुपये शेष हैं?
📌 उत्तर:
50.00 − 34.75 = 15.25 रुपये
🟠 प्रश्न 6:
किसी विद्यार्थी की ऊँचाई 152.6 सेमी थी और उसकी बहन की ऊँचाई 148.3 सेमी है। उनमें कितना अंतर है?
📌 उत्तर:
152.6 − 148.3 = 4.3 सेमी
🟠 प्रश्न 7:
एक पाइपलाइन की लंबाई 45.75 मीटर है। उसमें से 27.35 मीटर पाइप लगाया जा चुका है। अब कितना पाइप लगाना बाकी है?
📌 उत्तर:
45.75 − 27.35 = 18.4 मीटर
🟠 प्रश्न 8:
एक खेत में 20.0 किग्रा बीज डाला जाना था, लेकिन 16.75 किग्रा बीज ही डाला गया। अब कितना बीज और डालना है?
📌 उत्तर:
20.0 − 16.75 = 3.25 किग्रा
🟠 प्रश्न 9:
सीमा ने 125.50 रुपये खर्च किए जबकि उसके पास 200.00 रुपये थे। शेष कितने बचे?
📌 उत्तर:
200.00 − 125.50 = 74.50 रुपये
🟠 प्रश्न 10:
राहुल की किताब 285.45 पृष्ठों की है। उसने 172.20 पृष्ठ पढ़ लिए हैं। कितने पृष्ठ शेष हैं?
📌 उत्तर:
285.45 − 172.20 = 113.25 पृष्ठ
🟠 प्रश्न 11:
एक दुकान में पहले 58.35 किग्रा चावल था। 39.85 किग्रा बेच दिया गया। अब कितना चावल बचा?
📌 उत्तर:
58.35 − 39.85 = 18.5 किग्रा
🟠 प्रश्न 12:
एक कार ने 158.6 किमी की यात्रा की। कुल यात्रा 200.0 किमी की थी। अब कितना और चलना बाकी है?
📌 उत्तर:
200.0 − 158.6 = 41.4 किमी
🟠 प्रश्न 13:
एक डिब्बे में 6.8 लीटर तेल है। उसमें से 3.25 लीटर तेल निकाल लिया गया। अब कितना तेल बचा?
📌 उत्तर:
6.8 − 3.25 = 3.55 लीटर
🟠 प्रश्न 14:
सौरभ की ऊँचाई 165.75 सेमी है और अर्जुन की ऊँचाई 159.25 सेमी है। उनमें कितना अंतर है?
📌 उत्तर:
165.75 − 159.25 = 6.5 सेमी
🟠 प्रश्न 15:
एक बच्चा 3.45 किग्रा वजनी था, अब उसका वजन 5.20 किग्रा है। वजन में कितना वृद्धि हुई?
📌 उत्तर:
5.20 − 3.45 = 1.75 किग्रा
🟠 प्रश्न 16:
एक नल से 22.50 लीटर पानी बहा। दूसरे नल से 14.75 लीटर ही बहा। दोनों में कितना अंतर?
📌 उत्तर:
22.50 − 14.75 = 7.75 लीटर
🟠 प्रश्न 17:
रीना के पास 28.80 मीटर रिबन था। उसने 18.45 मीटर उपयोग कर लिया। शेष कितना बचा?
📌 उत्तर:
28.80 − 18.45 = 10.35 मीटर
🟠 प्रश्न 18:
सड़क की कुल लंबाई 125.00 किमी है। अब तक 87.75 किमी बन चुकी है। कितनी लंबाई बाकी है?
📌 उत्तर:
125.00 − 87.75 = 37.25 किमी
🟠 प्रश्न 19:
एक कार की पेट्रोल टंकी में 45.65 लीटर पेट्रोल है। 20.25 लीटर खर्च हो गया। कितना पेट्रोल शेष है?
📌 उत्तर:
45.65 − 20.25 = 25.40 लीटर
🟠 प्रश्न 20:
एक कागज़ की लंबाई 29.75 सेमी है। उसमें से 15.25 सेमी काट दिया गया। अब कितनी लंबाई बची?
📌 उत्तर:
29.75 − 15.25 = 14.5 सेमी
🟠 प्रश्न 21:
किसी परीक्षा में कुल 100 अंक थे। छात्र को 76.65 अंक मिले। वह कितने अंक से पूर्णांक से पीछे रहा?
📌 उत्तर:
100 − 76.65 = 23.35 अंक
🟠 प्रश्न 22:
मोहन के पास 68.75 रुपये थे। उसने 45.25 रुपये खर्च कर दिए। अब उसके पास कितने रुपये बचे?
📌 उत्तर:
68.75 − 45.25 = 23.50 रुपये
🟠 प्रश्न 23:
एक बाल्टी में 12.25 लीटर दूध था। उसमें से 8.80 लीटर निकाल लिया गया। शेष कितना है?
📌 उत्तर:
12.25 − 8.80 = 3.45 लीटर
🟠 प्रश्न 24:
एक नल 35.50 लीटर पानी भरता है। दूसरा नल 28.75 लीटर। दोनों में कितना अंतर है?
📌 उत्तर:
35.50 − 28.75 = 6.75 लीटर
🟠 प्रश्न 25:
राम ने 50.00 रुपये में से 18.45 रुपये खर्च किए। शेष कितने रुपये बचा?
📌 उत्तर:
50.00 − 18.45 = 31.55 रुपये
✅ अगला क्या?
यदि आप कहें तो अगला सेट "गुणा पर आधारित दशमलव शब्द समस्याएँ" (25 प्रश्न) शुरू किया जाए।
क्या मैं अगला भाग प्रारंभ करूँ?
यहाँ पर दशमलव पर आधारित 25 घटाव (Subtraction) से संबंधित शब्द समस्याएँ प्रस्तुत की जा रही हैं। प्रत्येक प्रश्न को बच्चों की समझ के अनुसार सरल भाषा में बनाया गया है और उत्तर सहित हल भी दिया गया है।
🔻 दशमलव पर आधारित शब्द समस्याएँ (घटाव – Subtraction)
🔹 कक्षा 5 से 7 के स्तर पर
1. राधा के पास ₹125.75 थे। उसने ₹37.40 खर्च कर दिए। उसके पास अब कितने रुपये बचे हैं?
➡️ हल:
₹125.75 - ₹37.40 = ₹88.35
✅ उत्तर: ₹88.35
2. एक डिब्बे में 6.45 लीटर दूध था। उसमें से 2.15 लीटर निकाल लिया गया। डिब्बे में अब कितना दूध बचा है?
➡️ हल:
6.45 – 2.15 = 4.30 लीटर
✅ उत्तर: 4.30 लीटर
3. एक पाइप से रोज़ाना 15.75 लीटर पानी गिरता है। एक दिन यह मात्रा घटकर 10.25 लीटर हो गई। कितना पानी कम गिरा?
➡️ हल:
15.75 – 10.25 = 5.50 लीटर
✅ उत्तर: 5.50 लीटर
4. एक लड़के की लंबाई 1.65 मीटर थी। उसकी बहन की लंबाई 1.25 मीटर है। दोनों में कितना फ़र्क है?
➡️ हल:
1.65 – 1.25 = 0.40 मीटर
✅ उत्तर: 0.40 मीटर
5. रीना के पास 9.90 मीटर कपड़ा था। उसने 5.35 मीटर उपयोग कर लिया। कितना कपड़ा बचा है?
➡️ हल:
9.90 – 5.35 = 4.55 मीटर
✅ उत्तर: 4.55 मीटर
6. 35.5 किलो चीनी थी। उसमें से 17.75 किलो निकाल ली गई। अब कितनी बची है?
➡️ हल:
35.5 – 17.75 = 17.75 किलो
✅ उत्तर: 17.75 किलो
7. एक दुकान पर पहले दिन 120.40 रुपये का सामान बिका, और दूसरे दिन 98.65 रुपये का। दोनों में कितना अंतर है?
➡️ हल:
120.40 – 98.65 = 21.75 रुपये
✅ उत्तर: ₹21.75
8. किसी कार में 42.8 लीटर पेट्रोल था, 16.9 लीटर खर्च हो गया। अब कितना पेट्रोल बचा?
➡️ हल:
42.8 – 16.9 = 25.9 लीटर
✅ उत्तर: 25.9 लीटर
9. एक बाल्टी में 10.0 लीटर पानी था। उसमें से 4.5 लीटर गिर गया। कितना बचा?
➡️ हल:
10.0 – 4.5 = 5.5 लीटर
✅ उत्तर: 5.5 लीटर
10. किसी खेत की लंबाई 145.75 मीटर है और चौड़ाई 75.25 मीटर है। दोनों में कितना अंतर है?
➡️ हल:
145.75 – 75.25 = 70.50 मीटर
✅ उत्तर: 70.50 मीटर
11. एक आदमी के पास 250.00 रुपये थे। उसने 199.99 रुपये खर्च कर दिए। कितना बचा?
➡️ हल:
250.00 – 199.99 = ₹50.01
✅ उत्तर: ₹50.01
12. संजय की ऊँचाई 1.88 मीटर है और अजय की 1.62 मीटर। दोनों में कितना अंतर है?
➡️ हल:
1.88 – 1.62 = 0.26 मीटर
✅ उत्तर: 0.26 मीटर
13. रेखा के पास 500.00 ग्राम चॉकलेट थीं। उसने 256.25 ग्राम खा लीं। कितनी बचीं?
➡️ हल:
500.00 – 256.25 = 243.75 ग्राम
✅ उत्तर: 243.75 ग्राम
14. एक गिलास में 350.5 मि.ली. पानी था। गिर कर 127.25 मि.ली. रह गया। कितना गिरा?
➡️ हल:
350.5 – 127.25 = 223.25 मि.ली.
✅ उत्तर: 223.25 मि.ली.
15. एक नाव 78.9 किलोमीटर चली। कुछ दूरी तय करने के बाद वह 59.3 किलोमीटर पर रुक गई। उसने कितनी दूरी तय की?
➡️ हल:
78.9 – 59.3 = 19.6 किलोमीटर
✅ उत्तर: 19.6 किलोमीटर
16. साइकिल की कीमत ₹2399.75 है। ग्राहक के पास ₹2500.00 हैं। कितने रुपये वापस मिलेंगे?
➡️ हल:
₹2500.00 – ₹2399.75 = ₹100.25
✅ उत्तर: ₹100.25
17. श्याम ने 5.55 मीटर कपड़ा खरीदा, जिसमें से 2.25 मीटर काट दिया गया। अब कितना बचा?
➡️ हल:
5.55 – 2.25 = 3.30 मीटर
✅ उत्तर: 3.30 मीटर
18. एक झरने में प्रति दिन 122.50 लीटर पानी आता है, सूखे में यह 87.75 लीटर रह गया। कितना कम हो गया?
➡️ हल:
122.50 – 87.75 = 34.75 लीटर
✅ उत्तर: 34.75 लीटर
19. 1 किलो में 1000 ग्राम होते हैं। अगर कोई वस्तु 765.25 ग्राम है, तो 1 किलो में से कितना कम है?
➡️ हल:
1000 – 765.25 = 234.75 ग्राम
✅ उत्तर: 234.75 ग्राम
20. रमेश ने ₹100.00 में से ₹67.45 खर्च किए। कितना बचा?
➡️ हल:
₹100.00 – ₹67.45 = ₹32.55
✅ उत्तर: ₹32.55
21. एक किसान के पास 875.5 लीटर दूध था। 472.75 लीटर बेच दिया। कितना बचा?
➡️ हल:
875.5 – 472.75 = 402.75 लीटर
✅ उत्तर: 402.75 लीटर
22. एक मोबाइल का वज़न 185.75 ग्राम है। एक केस लगाने के बाद उसका वज़न 215.25 ग्राम हो गया। केस का वज़न कितना है?
➡️ हल:
215.25 – 185.75 = 29.5 ग्राम
✅ उत्तर: 29.5 ग्राम
23. एक बैग का वज़न 10.0 किलो था। कुछ सामग्री निकालने पर यह 6.65 किलो रह गया। कितना वज़न निकाला गया?
➡️ हल:
10.0 – 6.65 = 3.35 किलो
✅ उत्तर: 3.35 किलो
24. घड़ी की कीमत ₹1350.75 थी। डिस्काउंट के बाद उसे ₹1150.50 में बेचा गया। कितनी छूट मिली?
➡️ हल:
1350.75 – 1150.50 = ₹200.25
✅ उत्तर: ₹200.25
25. एक हवाई जहाज ने 1800.5 किमी उड़ान भरी। लैंडिंग से पहले उसने 1250.25 किमी तय कर लिया था। शेष कितनी दूरी बची थी?
➡️ हल:
1800.5 – 1250.25 = 550.25 किमी
✅ उत्तर: 550.25 किमी
यदि आप चाहें तो अब मैं अगले सेट के –
👉 गुणा पर आधारित दशमलव शब्द समस्याएँ (25 प्रश्न)
भी तुरंत दे सकता हूँ।
क्या मैं उसे प्रारंभ करूँ?
गुणा (Multiplication) गणित की चार मूलभूत संक्रियाओं (जोड़, घटाव, गुणा, भाग) में से एक है। यह किसी संख्या को कितनी बार दोहराया गया है, इसे दर्शाने का तरीका है। इसे बार-बार जोड़ने की संक्षिप्त विधि भी कह सकते हैं।
🔢 गुणा क्या होता है?
परिभाषा:
गुणा का अर्थ है — एक संख्या को किसी दूसरी संख्या से इतनी बार जोड़ना जितनी बार दूसरी संख्या है।
उदाहरण के लिए:
3 × 4 का अर्थ है — 3 को 4 बार जोड़ना:
3 + 3 + 3 + 3 = 12
✍️ प्रमुख शब्दावली (Terminology)
पद | अर्थ |
---|---|
गुणक (Multiplier) | जो संख्या गुणा करती है (जैसे 4) |
गुणनांक (Multiplicand) | जिससे गुणा की जाती है (जैसे 3) |
गुणनफल (Product) | अंतिम उत्तर (जैसे 12) |
📌 उदाहरण:
4 × 5 = 20
यहाँ:
- 4 = गुणक
- 5 = गुणनांक
- 20 = गुणनफल
🔍 गुणा के प्रकार:
-
पूर्ण संख्याओं की गुणा (Whole Numbers)
- जैसे 5 × 6 = 30
-
दशमलव संख्याओं की गुणा (Decimals)
- जैसे 2.5 × 1.2 = 3.00
-
भिन्नों की गुणा (Fractions)
- जैसे ½ × ⅔ = ⅓
-
मिश्रित संख्याओं की गुणा (Mixed Numbers)
- जैसे 1¾ × 2 = 3½
💡 गुणा का महत्व:
- तालिकाओं (Tables) का आधार है
- दैनिक जीवन के खर्च, दूरी, समय की गणना में
- क्षेत्रफल, आयतन, अनुपात आदि में प्रयुक्त
🧠 गुणा सीखने के लिए ट्रिक्स:
-
गुणा तालिका याद करना अनिवार्य है।
- 1 से 20 तक की तालिका
-
दशमलव में स्थान गिनना जरूरी है।
- जैसे 0.2 × 0.3 = 0.06 (2 दशमलव स्थान)
-
0 से गुणा करने पर हमेशा उत्तर 0 होता है।
- 8 × 0 = 0
🔗 अब आगे क्या?
क्या आप चाहेंगे कि मैं:
- दशमलव संख्याओं की गुणा को उदाहरण सहित विस्तार से समझाऊँ?
- या सीधे 25 दशमलव गुणा पर आधारित शब्द समस्याएँ दूँ हल सहित?
बताइए:
➡️ "समझाओ" या "25 प्रश्न दो"?
यह रहे घोड़ा (गुणा) पर आधारित 25 शब्द समस्याएँ उनके उत्तर सहित, जो दशमलव अंकों के साथ स्टेप-बाय-स्टेप सोचने का अभ्यास कराएँगे:
🐎 गुणा पर आधारित दशमलव शब्द समस्याएँ (25 प्रश्न उत्तर सहित)
1. एक दूधवाले के पास 2.5 लीटर दूध की बोतल है। उसने ऐसी 6 बोतलें बेच दीं। उसने कुल कितने लीटर दूध बेचा?
उत्तर:
2.5 × 6 = 15 लीटर
2. एक किताब की कीमत ₹35.75 है। राम ने ऐसी 4 किताबें खरीदीं। कुल खर्च कितना हुआ?
उत्तर:
35.75 × 4 = ₹143.00
3. एक खेत में एक वर्ग मीटर में 1.25 किलोग्राम गेहूं उगता है। 100 वर्ग मीटर में कितनी उपज होगी?
उत्तर:
1.25 × 100 = 125 किलोग्राम
4. एक कार एक घंटे में 65.4 किलोमीटर चलती है। 3.5 घंटे में कितनी दूरी तय करेगी?
उत्तर:
65.4 × 3.5 = 228.9 किमी
5. एक सेब का वजन 0.23 किलोग्राम है। 12 सेब का कुल वजन कितना होगा?
उत्तर:
0.23 × 12 = 2.76 किग्रा
6. एक बोतल में 1.2 लीटर पानी आता है। 8 बोतलों में कुल कितना पानी होगा?
उत्तर:
1.2 × 8 = 9.6 लीटर
7. एक आदमी रोज 2.75 घंटे व्यायाम करता है। वह 6 दिन तक ऐसा करता है। कुल व्यायाम समय क्या होगा?
उत्तर:
2.75 × 6 = 16.5 घंटे
8. एक किताब में 0.45 रुपये प्रति पृष्ठ की लागत आती है। 200 पृष्ठों पर कुल लागत कितनी होगी?
उत्तर:
0.45 × 200 = ₹90.00
9. एक केला 0.65 रुपये का है। राधा ने 15 केले खरीदे। कुल कीमत?
उत्तर:
0.65 × 15 = ₹9.75
10. एक लिटर पेट्रोल ₹105.35 का है। 3.5 लिटर के लिए कुल कीमत?
उत्तर:
105.35 × 3.5 = ₹368.725 = ₹368.73 (निकटतम)
11. एक बकरी रोज 1.75 लीटर दूध देती है। 10 दिनों में कितना दूध मिलेगा?
उत्तर:
1.75 × 10 = 17.5 लीटर
12. एक टिकट की कीमत ₹12.60 है। 8 टिकट के लिए कुल भुगतान कितना होगा?
उत्तर:
12.60 × 8 = ₹100.80
13. एक डिब्बा 0.85 किलोग्राम का है। ऐसे 9 डिब्बे का कुल वजन?
उत्तर:
0.85 × 9 = 7.65 किग्रा
14. एक छात्र एक दिन में 1.2 घंटे पढ़ता है। 30 दिनों में कुल अध्ययन समय?
उत्तर:
1.2 × 30 = 36 घंटे
15. एक बिजली उपकरण 2.5 यूनिट प्रति दिन खपत करता है। 20 दिनों में कुल खपत?
उत्तर:
2.5 × 20 = 50 यूनिट
16. एक ट्रक 18.5 किलोमीटर प्रति लीटर चलता है। 10 लीटर में कितनी दूरी?
उत्तर:
18.5 × 10 = 185 किमी
17. एक मशीन प्रति घंटा 13.4 मीटर कपड़ा बनाती है। 5 घंटे में कितना कपड़ा बनेगा?
उत्तर:
13.4 × 5 = 67 मीटर
18. एक स्कूल में प्रति छात्र 2.65 किलोग्राम खाद्य सामग्री लगती है। 30 छात्रों के लिए?
उत्तर:
2.65 × 30 = 79.5 किग्रा
19. एक दर्जी 1.75 मीटर कपड़ा प्रति शर्ट में उपयोग करता है। 9 शर्ट के लिए कितना कपड़ा चाहिए?
उत्तर:
1.75 × 9 = 15.75 मीटर
20. एक मोबाइल रिचार्ज ₹49.99 का है। 5 बार करवाने पर खर्च?
उत्तर:
49.99 × 5 = ₹249.95
21. एक छात्र की कॉपी ₹13.75 की है। उसने 16 कॉपियाँ खरीदीं।
उत्तर:
13.75 × 16 = ₹220.00
22. एक टोकरी में 0.78 किग्रा आम हैं। 7 टोकरियों में कितने आम?
उत्तर:
0.78 × 7 = 5.46 किग्रा
23. एक बिस्किट का वजन 0.024 किग्रा है। 100 बिस्किट का कुल वजन?
उत्तर:
0.024 × 100 = 2.4 किग्रा
24. एक पेन ₹18.95 का है। 12 पेन की कीमत?
उत्तर:
18.95 × 12 = ₹227.40
25. एक बस एक घंटे में 47.25 किमी चलती है। 6.5 घंटे में कितनी दूरी तय करेगी?
उत्तर:
47.25 × 6.5 = 307.125 किमी
यदि आप चाहें तो अगला सेट भाग पर आधारित शब्द समस्याएँ (25 प्रश्न उत्तर सहित) भी दूँ?
बताएँ — शुरू करूँ?
यह रहे गुणा (Multiplication) पर आधारित 25 शब्द समस्याएँ उनके उत्तर (Answer Key) सहित। ये प्रश्न कक्षा 4–6 के स्तर के अनुसार तैयार किए गए हैं, विशेष रूप से दशमलव संख्याओं के प्रयोग को ध्यान में रखते हुए।
🔢 दशमलव पर आधारित गुणा के 25 शब्द समस्याएँ (Word Problems on Multiplication with Decimals)
🧮 प्रश्न 1–5:
-
रीमा रोज़ 1.25 लीटर दूध पीती है। 7 दिनों में वह कितने लीटर दूध पीएगी?
उत्तर: 1.25 × 7 = 8.75 लीटर -
एक चॉकलेट की कीमत ₹2.50 है। 12 चॉकलेट की कीमत कितनी होगी?
उत्तर: 2.50 × 12 = ₹30.00 -
एक बोतल में 0.75 लीटर पानी है। ऐसी 8 बोतलों में कुल पानी कितना होगा?
उत्तर: 0.75 × 8 = 6.00 लीटर -
एक किताब का वजन 1.2 किलोग्राम है। 5 किताबों का कुल वजन कितना होगा?
उत्तर: 1.2 × 5 = 6.0 किलोग्राम -
एक स्टिकर की कीमत ₹0.65 है। 20 स्टिकर की कीमत कितनी होगी?
उत्तर: 0.65 × 20 = ₹13.00
🧮 प्रश्न 6–10:
-
एक बच्चा रोज़ 1.4 घंटे पढ़ाई करता है। 10 दिनों में उसने कितने घंटे पढ़ाई की?
उत्तर: 1.4 × 10 = 14.0 घंटे -
एक साइकिल 2.75 किमी/घंटा की रफ्तार से चलती है। 4 घंटे में वह कितनी दूरी तय करेगी?
उत्तर: 2.75 × 4 = 11.0 किमी -
एक केला 0.18 किग्रा का है। 15 केले कितने किग्रा के होंगे?
उत्तर: 0.18 × 15 = 2.70 किग्रा -
एक व्यक्ति 3.5 लीटर पेट्रोल रोज़ खर्च करता है। 6 दिनों में कुल खर्च कितना?
उत्तर: 3.5 × 6 = 21.0 लीटर -
एक पेंसिल ₹1.75 की है। 9 पेंसिल की कीमत?
उत्तर: 1.75 × 9 = ₹15.75
🧮 प्रश्न 11–15:
-
एक टोकरी में 2.25 किलो सेब हैं। ऐसी 7 टोकरी में कुल सेब?
उत्तर: 2.25 × 7 = 15.75 किलो -
एक बच्चा रोज़ 0.9 लीटर पानी पीता है। 30 दिनों में कितना पानी?
उत्तर: 0.9 × 30 = 27.0 लीटर -
₹12.50 की एक बोतल है। 4 बोतल की कुल कीमत?
उत्तर: 12.50 × 4 = ₹50.00 -
एक बकरी एक दिन में 2.75 लीटर दूध देती है। 10 दिनों में कितना दूध?
उत्तर: 2.75 × 10 = 27.5 लीटर -
1.15 किमी लंबी सड़क है। ऐसी 6 सड़कों की कुल लंबाई?
उत्तर: 1.15 × 6 = 6.90 किमी
🧮 प्रश्न 16–20:
-
एक फल का वजन 0.65 किग्रा है। 8 फलों का कुल वजन?
उत्तर: 0.65 × 8 = 5.20 किग्रा -
एक कार 9.8 किमी/लीटर का माइलेज देती है। 5 लीटर में दूरी?
उत्तर: 9.8 × 5 = 49.0 किमी -
एक टीचर 1.25 घंटे एक क्लास में लेता है। 4 क्लासों में कुल समय?
उत्तर: 1.25 × 4 = 5.00 घंटे -
एक डिब्बे में 2.3 किलो आटा है। 3 डिब्बों में?
उत्तर: 2.3 × 3 = 6.9 किलो -
एक नोटबुक ₹13.75 की है। 6 नोटबुक की कीमत?
उत्तर: 13.75 × 6 = ₹82.50
🧮 प्रश्न 21–25:
-
एक खिलाड़ी रोज़ 1.8 घंटे अभ्यास करता है। 20 दिनों में अभ्यास का समय?
उत्तर: 1.8 × 20 = 36.0 घंटे -
एक नल 0.75 लीटर पानी प्रति मिनट देता है। 10 मिनट में कितना पानी निकलेगा?
उत्तर: 0.75 × 10 = 7.5 लीटर -
एक पेन ₹5.25 का है। 11 पेन की कीमत?
उत्तर: 5.25 × 11 = ₹57.75 -
एक पेड़ की ऊँचाई 3.45 मीटर है। 4 पेड़ों की कुल ऊँचाई?
उत्तर: 3.45 × 4 = 13.80 मीटर -
एक प्लेट में 1.35 किलो फल है। 9 प्लेटों में कुल फल?
उत्तर: 1.35 × 9 = 12.15 किलो
यदि आप चाहें, तो अगला सेट "भाग पर आधारित शब्द समस्याएँ" (25 प्रश्न) भी दे सकता हूँ।
क्या आप चाहेंगे कि मैं उन्हें भी अभी दूँ?
भाग (Division) एक मौलिक गणितीय क्रिया है जिसमें एक संख्या को दूसरी संख्या से "विभाजित" किया जाता है। इसे आप "वितरण", "विभाजन", "समान बाँटना" या "कितने बार में समा रहा है" – इन रूपों में समझ सकते हैं।
🔹 भाग की परिभाषा:
जब कोई संख्या (भाज्य) किसी दूसरी संख्या (भाजक) से विभाजित की जाती है, तो जो परिणाम निकलता है उसे भागफल कहते हैं, और यदि कुछ बचता है तो उसे शेष (remainder) कहते हैं।
✍️ सूत्र:
\text{भाज्य} \div \text{भाजक} = \text{भागफल} \, \text{(यदि पूर्ण रूप से विभाजित हो)} \\
\text{या} \quad \text{भाज्य} = (\text{भागफल} \times \text{भाजक}) + \text{शेष}
🔹 उदाहरण:
-
12 ÷ 3 = 4
→ 12 को 3 भागों में बाँटा गया, प्रत्येक भाग में 4 आया। -
17 ÷ 5 = 3 शेष 2
→ 5 के 3 गुना = 15, तो 17 – 15 = 2 शेष बचता है।
🔹 भाग के मुख्य शब्द:
हिन्दी शब्द | अर्थ |
---|---|
भाज्य (Dividend) | जिसे बाँटना है |
भाजक (Divisor) | जिससे बाँटा जाता है |
भागफल (Quotient) | बाँटने पर जो भाग में आता है |
शेषफल (Remainder) | बाँटने के बाद जो बचता है |
🔹 भाग के प्रकार:
- पूर्ण भाग: जब शेषफल 0 होता है (जैसे 20 ÷ 4 = 5)
- अपूर्ण भाग: जब शेषफल शून्य नहीं होता (जैसे 23 ÷ 4 = 5 शेष 3)
- दशमलव भाग: जब उत्तर दशमलव में आता है (जैसे 7 ÷ 2 = 3.5)
- अनुपात में भाग: जैसे 2:3 का अर्थ है 2 भाग और 3 भाग में कुल को बाँटना
🔹 भाग की दैनिक उपयोगिता:
- पैसे बाँटना (100 रुपये को 5 बच्चों में बाँटना)
- रोटियाँ बराबर बाँटना
- किलो को ग्राम में बाँटना
- दूरी को समय से बाँटना = गति
अगर यह स्पष्ट है, तो अब मैं अगले संदेश में:
✅ भाग पर आधारित 25 शब्द समस्याएँ हल सहित
प्रस्तुत करूँ?
बस “हाँ शुरू करो” कहें।
भाग (Division) एक मौलिक गणितीय क्रिया है, जिसमें हम यह पता लगाते हैं कि एक संख्या में कोई दूसरी संख्या कितनी बार समाती है। इसे विभाजन कहते हैं।
🔷 भाग की मूल बातें:
घटक | अर्थ | उदाहरण (20 ÷ 4) |
---|---|---|
भाज्य (Dividend) | जो संख्या बाँटी जाती है | 20 |
भाजक (Divisor) | जिससे बाँटा जाता है | 4 |
भागफल (Quotient) | बाँटने पर जो परिणाम आता है | 5 |
शेषफल (Remainder) | अगर कुछ बचता है तो | 0 |
🧮 भाग को समझने का आसान तरीका:
उदाहरण 1:
🍎 20 सेब हैं, और इन्हें 4 बच्चों में बराबर बाँटना है।
हर बच्चे को कितने सेब मिलेंगे?
उत्तर:
20 ÷ 4 = 5 सेब प्रति बच्चा ⇒ यह भागफल है।
उदाहरण 2:
📚 47 किताबें हैं, और हर शेल्फ़ में 6 किताबें रखनी हैं।
कितनी पूरी शेल्फ़ भरेंगी और कितनी किताबें बचेंगी?
उत्तर:
47 ÷ 6 = 7 शेल्फ़ पूरी भरेंगी (क्योंकि 6 × 7 = 42),
बचेंगी = 47 – 42 = 5 किताबें ⇒ यह शेषफल है।
🔢 भाग करने की विधियाँ:
1. लंबवत विधि (Long Division)
परंपरागत तरीका – स्कूलों में सिखाया जाता है।
2. छोटे अंकनों के लिए भाग:
उदाहरण: 36 ÷ 6 = 6
3. शेषफल के साथ भाग:
जैसे: 38 ÷ 5 = 7 शेष 3
4. दशमलव के साथ भाग:
जैसे: 15 ÷ 2 = 7.5
5. वेदिक गणित विधि (यावदूनम् / परावर्त्य आदि)
इसे हम चाहें तो विशेष रूप से बाद में विस्तार से भी पढ़ सकते हैं।
🧠 भाग को कैसे पहचानें शब्द समस्याओं में?
- "प्रत्येक को बराबर-बराबर देना है"
- "प्रति बच्चा", "प्रति पैकेट", "प्रति लीटर", "प्रति व्यक्ति"
- "कितने भागों में बाँटा जाएगा?"
- "कितने समूह बनेंगे?"
- "एक में कितना आएगा?"
यदि यह भाग की मूल समझ स्पष्ट है, तो अब मैं आपको:
✅ "भाग पर आधारित शब्द समस्याएँ – 25 प्रश्न उत्तर सहित"
देने के लिए तैयार हूँ।
क्या अब मैं वह सूची शुरू करूँ?
यह रहे भाग (Division) पर आधारित 25 शब्द समस्याएँ उनके उत्तर सहित, जो बच्चों को सरलता से समझ आ सकें:
🧠 भाग पर आधारित शब्द समस्याएँ (Word Problems on Division)
1. एक डिब्बे में 60 आम हैं। यदि हर टोकरी में 5 आम रखें, तो कितनी टोकरी भरेंगी?
उत्तर: 60 ÷ 5 = 12 टोकरी
2. एक स्कूल में 120 बच्चे हैं। यदि हर कक्षा में 30 बच्चे बैठते हैं, तो कितनी कक्षाएँ बनेंगी?
उत्तर: 120 ÷ 30 = 4 कक्षाएँ
3. 96 बिस्किट 8 बच्चों में बराबर बाँटे जाएँ, तो हर बच्चे को कितने बिस्किट मिलेंगे?
उत्तर: 96 ÷ 8 = 12 बिस्किट
4. माँ ने 45 संतरे खरीदे और 9 बच्चों में बराबर बाँट दिए। हर बच्चे को कितने संतरे मिले?
उत्तर: 45 ÷ 9 = 5 संतरे
5. एक किताब की 72 पंक्तियाँ हैं। यदि एक पृष्ठ में 12 पंक्तियाँ हैं, तो किताब में कितने पृष्ठ होंगे?
उत्तर: 72 ÷ 12 = 6 पृष्ठ
6. एक बालकनी में 48 पौधे रखे गए। यदि हर स्टैंड में 6 पौधे रखे जाएँ, तो कितने स्टैंड लगेंगे?
उत्तर: 48 ÷ 6 = 8 स्टैंड
7. 64 गेंदों को 8 बच्चों में बराबर बाँटा गया। हर बच्चे को कितनी गेंदें मिलीं?
उत्तर: 64 ÷ 8 = 8 गेंदें
8. 84 किलो चावल को 7 बोरियों में बराबर-बराबर भर दिया गया। हर बोरी में कितना चावल है?
उत्तर: 84 ÷ 7 = 12 किलो
9. एक मेला मैदान में 100 लोग हैं। यदि 20-20 लोगों की कतारें बनाई जाएँ, तो कितनी कतारें बनेंगी?
उत्तर: 100 ÷ 20 = 5 कतारें
10. 144 पेंसिल को 12 डिब्बों में बराबर-बराबर रखा गया। हर डिब्बे में कितनी पेंसिल हैं?
उत्तर: 144 ÷ 12 = 12 पेंसिल
11. 90 रूपये को 10 बच्चों में बराबर बाँटा गया। हर बच्चे को कितने रूपये मिले?
उत्तर: 90 ÷ 10 = 9 रुपये
12. एक लड़के के पास 81 कंचे हैं। वह इन्हें 9 दोस्तों में बाँटता है। हर एक को कितने मिलेंगे?
उत्तर: 81 ÷ 9 = 9 कंचे
13. एक किसान के पास 63 किलो गेहूँ है। वह इसे 7 बोरियों में बाँटना चाहता है। हर बोरी में कितना आएगा?
उत्तर: 63 ÷ 7 = 9 किलो
14. 105 टॉफियाँ 7 बच्चों में बाँटी गईं। हर बच्चे को कितनी टॉफी मिली?
उत्तर: 105 ÷ 7 = 15 टॉफी
15. एक डिब्बे में 96 केले हैं। यदि हर गुच्छे में 8 केले बाँधें, तो कितने गुच्छे बनेंगे?
उत्तर: 96 ÷ 8 = 12 गुच्छे
16. 132 किताबों को 11 अलमारियों में समान रूप से रखा गया। हर अलमारी में कितनी किताबें?
उत्तर: 132 ÷ 11 = 12 किताबें
17. एक थैले में 72 चॉकलेट हैं। यदि 9 बच्चों को समान रूप से बाँटी जाएँ, तो हर बच्चे को?
उत्तर: 72 ÷ 9 = 8 चॉकलेट
18. 108 फूलों को 12 गुलदस्तों में सजाना है। हर गुलदस्ते में कितने फूल होंगे?
उत्तर: 108 ÷ 12 = 9 फूल
19. 36 लीटर दूध को 6 बर्तनों में भरना है। हर बर्तन में कितना दूध होगा?
उत्तर: 36 ÷ 6 = 6 लीटर
20. एक व्यक्ति के पास 180 रुपये हैं। वह 15 लोगों को बराबर बाँटना चाहता है। हर एक को?
उत्तर: 180 ÷ 15 = 12 रुपये
21. 225 गेंदें हैं। यदि हर डिब्बे में 15 गेंदें रखी जाएँ, तो कितने डिब्बे चाहिए?
उत्तर: 225 ÷ 15 = 15 डिब्बे
22. 300 सेब 25 थैलियों में बाँटे गए। हर थैली में कितने सेब हैं?
उत्तर: 300 ÷ 25 = 12 सेब
23. 560 रुपये को 40 छात्रों में बाँटा गया। हर छात्र को कितने रुपये मिले?
उत्तर: 560 ÷ 40 = 14 रुपये
24. एक क्लास में 96 चित्र हैं। 8 बच्चों में बराबर बाँटें तो हर बच्चे को कितने चित्र मिलेंगे?
उत्तर: 96 ÷ 8 = 12 चित्र
25. 600 पन्नों की एक किताब को 20 दिन में पढ़ना है। हर दिन कितने पन्ने पढ़ने होंगे?
उत्तर: 600 ÷ 20 = 30 पन्ने प्रति दिन
यदि आप चाहें तो मैं इन प्रश्नों को चित्रों या स्टेप-बाय-स्टेप सिखाने की शैली में भी दे सकता हूँ।
क्या अब अगले अभ्यास (मिश्रित प्रश्न) या जांच परीक्षा की तरह क्विज़ देना चाहेंगे?
यह रहे भाग (Division) पर आधारित अगली 25 शब्द समस्याएँ (Word Problems) उनके उत्तर (Answers) सहित:
📘 भाग पर आधारित शब्द समस्याएँ – भाग 2 (प्रश्न 26 से 50)
प्रश्न 26. एक किसान के पास 96 किलो गेहूँ है। वह इसे 8 बोरियों में बराबर-बराबर बाँटना चाहता है। प्रत्येक बोरी में कितना गेहूँ होगा?
उत्तर: 96 ÷ 8 = 12 किलो
प्रश्न 27. 432 छात्रों को 12 कक्षाओं में समान रूप से बाँटा गया। प्रत्येक कक्षा में कितने छात्र होंगे?
उत्तर: 432 ÷ 12 = 36 छात्र
प्रश्न 28. 250 रुपये को 5 बच्चों में समान रूप से बाँटा गया। प्रत्येक को कितने रुपये मिले?
उत्तर: 250 ÷ 5 = 50 रुपये
प्रश्न 29. एक टोकरी में 180 संतरे हैं। यदि प्रत्येक टोकरी में 15 संतरे रखने हैं, तो कितनी टोकरी लगेंगी?
उत्तर: 180 ÷ 15 = 12 टोकरी
प्रश्न 30. एक फैक्टरी में 720 मशीनें हैं। उन्हें 18 कर्मचारियों में समान रूप से बाँटा गया। प्रत्येक कर्मचारी को कितनी मशीनें मिलीं?
उत्तर: 720 ÷ 18 = 40 मशीनें
प्रश्न 31. ₹864 को 36 लोगों में बराबर बाँटा गया। प्रत्येक को कितने रुपये मिले?
उत्तर: 864 ÷ 36 = ₹24
प्रश्न 32. 1350 किताबों को 45 अलमारियों में बराबर बाँटा गया। हर अलमारी में कितनी किताबें हैं?
उत्तर: 1350 ÷ 45 = 30 किताबें
प्रश्न 33. एक बस 600 किलोमीटर की दूरी 12 घंटों में तय करती है। औसत गति क्या है?
उत्तर: 600 ÷ 12 = 50 किमी/घंटा
प्रश्न 34. एक व्यक्ति के पास 840 रुपये हैं। वह इसे 7 दोस्तों में समान रूप से बाँटना चाहता है। प्रत्येक को कितने रुपये मिलेंगे?
उत्तर: 840 ÷ 7 = ₹120
प्रश्न 35. 1212 गोलियाँ 4 दवाखानों में बराबर बाँटी गईं। हर दवाखाने को कितनी गोलियाँ मिलीं?
उत्तर: 1212 ÷ 4 = 303 गोलियाँ
प्रश्न 36. 1000 किलो चावल को 50 लोगों में बराबर बाँटा गया। हर एक को कितना चावल मिला?
उत्तर: 1000 ÷ 50 = 20 किलो
प्रश्न 37. ₹2700 की राशि 9 बच्चों में समान रूप से बाँटी गई। प्रत्येक को कितने रुपये मिले?
उत्तर: 2700 ÷ 9 = ₹300
प्रश्न 38. एक साप्ताहिक वेतन ₹3500 है। एक व्यक्ति ने 7 दिनों में यह अर्जित किया। प्रतिदिन कितनी कमाई हुई?
उत्तर: 3500 ÷ 7 = ₹500
प्रश्न 39. 600 पन्नों की किताब को 10 दिनों में पढ़ना है। हर दिन कितने पन्ने पढ़ने होंगे?
उत्तर: 600 ÷ 10 = 60 पन्ने/दिन
प्रश्न 40. एक गाड़ी ने 180 किलोमीटर की यात्रा 6 घंटे में पूरी की। औसत गति क्या थी?
उत्तर: 180 ÷ 6 = 30 किमी/घंटा
प्रश्न 41. 1080 को 36 से विभाजित करें।
उत्तर: 1080 ÷ 36 = 30
प्रश्न 42. 1540 चॉकलेट्स को 70 बच्चों में बाँटा गया। प्रत्येक को कितनी चॉकलेट्स मिलीं?
उत्तर: 1540 ÷ 70 = 22 चॉकलेट्स
प्रश्न 43. ₹960 को 24 लोगों में बाँटा गया। हर एक को कितना हिस्सा मिला?
उत्तर: 960 ÷ 24 = ₹40
प्रश्न 44. 1280 किलो आलू 8 दुकानों में बराबर बाँटा गया। प्रत्येक को कितना मिला?
उत्तर: 1280 ÷ 8 = 160 किलो
प्रश्न 45. एक बाग में 144 पेड़ हैं। उन्हें 12 कतारों में बराबर लगाया गया। हर कतार में कितने पेड़ हैं?
उत्तर: 144 ÷ 12 = 12 पेड़
प्रश्न 46. ₹630 को 9 बच्चों में समान रूप से बाँटा गया। प्रत्येक को कितने रुपये मिले?
उत्तर: 630 ÷ 9 = ₹70
प्रश्न 47. 1008 अंडों को 42 डिब्बों में बराबर बाँटा गया। हर डिब्बे में कितने अंडे होंगे?
उत्तर: 1008 ÷ 42 = 24 अंडे
प्रश्न 48. 672 विद्यार्थियों को 28 बसों में ले जाया गया। हर बस में कितने विद्यार्थी थे?
उत्तर: 672 ÷ 28 = 24 विद्यार्थी
प्रश्न 49. ₹1020 की राशि को 60 लोगों में बराबर बाँटा गया। हर एक को कितना मिला?
उत्तर: 1020 ÷ 60 = ₹17
प्रश्न 50. एक व्यक्ति के पास ₹1872 हैं। वह इसे 24 दिनों तक खर्च करना चाहता है। प्रतिदिन कितना खर्च करेगा?
उत्तर: 1872 ÷ 24 = ₹78
यदि आप चाहें तो इन चारों स्थितियों के 25-25 = 100 प्रश्नों को मैं एक PDF पुस्तिका में भी संगठित कर सकता हूँ।
क्या अब आप चाहते हैं कि मैं अगला सेट (उच्च स्तर के मिश्रित शब्द समस्याएँ) शुरू करूँ या इस पर आधारित अभ्यास पुस्तिका तैयार करूँ?
यह रहे भाग (Division) पर आधारित शब्द समस्याओं के केवल प्रश्न (पहले सेट के 25 प्रश्न) – हल अभी शामिल नहीं किए गए हैं:
🔢 भाग (Division) पर आधारित शब्द समस्याएँ – केवल प्रश्न (1–25)
-
एक किताब की कीमत ₹240 है। यदि 8 विद्यार्थियों ने मिलकर उसे खरीदा, तो प्रत्येक ने कितने रुपये दिए?
-
एक खेत में 960 किलोग्राम गेहूं है। यदि इसे 12 ट्रकों में बराबर बाँटा जाए, तो एक ट्रक में कितना गेहूं जाएगा?
-
432 चॉकलेट 36 बच्चों में बराबर बांटी गईं। प्रत्येक को कितनी चॉकलेट मिली?
-
600 मीटर लंबी रस्सी को 25-25 मीटर की लंबाई में काटा गया। कुल कितने टुकड़े बने?
-
एक दुकानदार के पास ₹1,500 हैं। यदि वह प्रत्येक खिलौना ₹75 में खरीदता है, तो वह कितने खिलौने खरीद सकता है?
-
एक पेड़ की ऊँचाई 180 मीटर है। यदि 6 मजदूर बराबर हिस्सों में पेड़ को काटते हैं, तो प्रत्येक को कितने मीटर काटने होंगे?
-
एक ट्रेन ने 1,440 किलोमीटर की दूरी तय की और उसने यह दूरी 6 घंटों में पूरी की। ट्रेन की औसत गति कितनी थी?
-
2,400 रुपये को 4 बच्चों में बराबर बाँटा गया। प्रत्येक को कितने रुपये मिले?
-
एक बगीचे में 864 फूल हैं, जिन्हें 24 गुलदस्तों में बराबर बाँटना है। एक गुलदस्ते में कितने फूल होंगे?
-
1,200 किलो चावल को 30 बोरियों में भरना है। एक बोरी में कितना चावल भरा जाएगा?
-
एक आदमी 2,700 रुपये 9 लोगों में बराबर बाँटना चाहता है। प्रत्येक को कितने रुपये मिलेंगे?
-
एक पानी की टंकी में 9,000 लीटर पानी है। यदि हर दिन 300 लीटर खर्च होता है, तो कितने दिनों तक पानी चलेगा?
-
एक किताब में 360 पृष्ठ हैं। यदि छात्र प्रतिदिन 30 पृष्ठ पढ़े, तो कितने दिन में किताब पूरी होगी?
-
1,344 सेबों को 48 टोकरियों में बराबर बाँटा गया। एक टोकरे में कितने सेब होंगे?
-
एक कार ने 960 किमी की यात्रा 4 दिनों में की। एक दिन में कार कितने किलोमीटर चली?
-
₹4,800 को 6 दोस्तों में बराबर बाँटा गया। हर एक को कितने रुपये मिले?
-
एक फैक्ट्री में 3,600 यूनिट उत्पाद बने, जिन्हें 18 डब्बों में पैक करना है। एक डब्बे में कितने यूनिट जाएंगे?
-
1,200 छात्रों को 30 बसों में भेजा गया। एक बस में कितने छात्र बैठे?
-
एक थैला में 2,250 ग्राम चीनी है। अगर इसे 15-15 ग्राम के पैकेट में बाँटना है, तो कितने पैकेट बनेंगे?
-
4,800 रुपए के कुल इनाम को 12 विजेताओं में बराबर बाँटा गया। एक को कितना इनाम मिला?
-
3,500 किताबें 7 स्कूलों में बराबर भेजी गईं। एक स्कूल को कितनी किताबें मिलीं?
-
780 रुपये 12 दोस्तों में बराबर बाँटे गए। एक को कितने रुपये मिले?
-
एक वीडियो को 600 सेकंड में खत्म किया गया। यदि इसे 20 बराबर हिस्सों में बांटा जाए, तो एक हिस्से की लंबाई कितनी होगी?
-
एक चॉकलेट फैक्ट्री में 3,300 चॉकलेट बनी। यदि 55 दुकानों को बराबर भेजा गया, तो एक दुकान को कितनी चॉकलेट मिली?
-
1,260 पेंसिलें 18 बच्चों में बराबर बाँटी गईं। एक बच्चे को कितनी पेंसिल मिली?
यदि आप चाहें, तो मैं इन सभी के उत्तर अगले उत्तर में दे सकता हूँ।
क्या उत्तर दूँ?
हाँ, बिल्कुल!
यह रहे अभी तक दिए गए 25 भाग पर आधारित शब्द समस्याओं के उत्तर क्रमवार:
🔢 भाग पर आधारित शब्द समस्याओं के उत्तर:
- 8
- 12
- 6
- 9
- 3
- 5
- 7
- 4
- 11
- 6
- 4
- 3
- 5
- 7
- 2
- 4
- 8
- 3
- 5
- 6
- 3
- 10
- 6
- 9
- 12
✅ यदि आप चाहें तो आगे अगले 25 भाग के प्रश्न (केवल प्रश्न) या फिर अन्य प्रकार जैसे मिश्र प्रश्न, प्रतिशत पर आधारित, या भिन्न पर आधारित शब्द समस्याएँ भी शुरू की जा सकती हैं।
क्या अगले 25 प्रश्न दूँ?
Post a Comment
Post a Comment