विनजीत वैदिक अंकगणित पुस्तक || 1 || अध्याय 18.00 || भाग ट्रेडिशनल मैथड
लेखक
M.A., B.Ed., DNYS, MASSCOM
(Specialist in Basic and Vedic Maths)
9/7/28/11/2021
05.01 वैदिक गणित (1) | भाग ट्रेडिशनल मैथड
Division –>
Division in mathematics is the process of dividing a number into equal parts and finding out how many equal parts of a number can be made?
Division is the opposite process of multiplication.
गणित में भाग, किसी संख्या को बराबर भागों में बांटने और यह पता लगाने की प्रक्रिया है कि संख्या के कितने बराबर भाग बनाए जा सकते हैं।
भाग गुणन की विपरीत प्रक्रिया है।
A division sum has Four parts called Divisor, Divident, Quotient and Remainder.
भाग के सवाल में चार भाग होते हैं जिन्हें भाजक, भाज्य, भागफल और शेषफल कहा जाता है।
Division
Divisor (d) ) Divident (D) (Quotient (Q)
_________
Remainder 'R'
d) D (Q
__
R
Dividend= Devisor × Quotient + Reminder
भागफल
भाजक ) भाज्य (
शेषफल
भाज्य = भाजक × भागफल + शेषफल
भाज्यांक = भाजकांक × भागफलांक + शेषफलांक
Dividend –> The number which is divided by the divisor or any number, is called Dividend.
भाज्य –> वह संख्या जिसे भाजक या किसी संख्या से भाग किया जाता है, भाज्य कहलाता है।
Divisor –> The number which is used to divide the dividend is called divisor.
भाजक –> वह संख्या जो भाज्य को भाग करने के काम आती है, भाजक कहलाती है।
Quotient –> The answer obtained by dividing a number is called quotient.
भागफल –> किसी संख्या को भाग करने पर प्राप्त उत्तर भागफल कहलाता है।
Remainder –> The number which remains after division is called remainder.
शेषफल –> वह संख्या जो भाग करने के उपरांत शेष बच जाती है, शेषफल कहलाती है।
In the conventional procedure for division, the process is of the following form.
Ex. (1)
Find 862/4 or Devide 862 ÷ 4
4 ) 8 6 2 ( 2 1 5
8 ↓ ↓
6 ↓
4 ↓
2 2
2 0
2
Q = 215
R = 2
Steps
• 4 goes into 8 = 2 and reminder 0
• 4 goes into 6 = 1 and remainder 2
• 4 goes into 22 = 5 and remainder 2
Ex. (1)
Find 862/4 or Devide 862 ÷ 4
7 ) 8 6 2 ( 1 2 3
7 ↓ ↓
1 6 ↓
1 4 ↓
2 2
2 1
1
Q = 123
R = 1
Steps
• 7 goes into 8 = 1 and remainder 1
• 7 goes into 16 = 2 and remainder 2
• 7 goes into 22 = 3 and remainder 1
Ex. (2)
Find 862/4 or Devide 862 ÷ 4
4 ) 2 8 6 2 ( 7 1 5
2 8 ↓ ↓
6 ↓
4 ↓
2 2
2 0
2
Q = 215
R = 2
Steps
• 4 Into 2 goes 0 remainder 2 Then take 28 as devidend
• 4 goes into 28 = 7
• 4 into 6 goes 1 remainder 2
• 4 into 22 goes 5 remainder 2
Ex. (1)
Find 86214/9 or Devide 86214 ÷ 9
9 ) 8 6 2 1 4( 9 5 7 9
8 1 ↓ ↓ ↓
5 2 ↓ ↓
4 5 ↓ ↓
7 1 ↓
6 3 ↓
8 4
8 1
3
Q = 9579
R = 3
Steps
• 9 not goes into 8 then we will take 2 digits 86
• 9 goes into 86 = 9 and remainder 5
• 9 goes into 52 = 5 and remainder 7
• 9 goes into 71 = 7 and remainder 8
• 9 goes into 84 = 9 and remainder 3
Use one digit, there is no division in one digit. When one is divided into four, the answer four shows that four has not been divided at all. Division always start at two.
The conventional method is always the same irrespective of the divisor. But Vedic methods are different depending on the nature of the divisor.
Post a Comment
Post a Comment