लेखक
M.A., B.Ed., DNYS, MASSCOM
20/1/15/11/2021
एक चरणीय समीकरणें
One Step Equations
विलोकनम द्वारा
TYPE 01
(1) जब समीकरण ax = b के रूप में हो।
ax = b
x = b/a
Exercise 01
(1). Solve the following:
निम्न को सरल करो
01. 6x = 18
02. 7y = 14
03. 2x = 6
04. 4m = 16
05. 2m = 7
06. 2m = 14
07. 5p = 20
08. 10p = 100
09. 3l = 42
10. 4x = 25
11. 8y = 3
12. 3l = 42
13. 4x = 25
14. 8y = 36
15. 20t = – 10
Sol. 01.
6x = 18
x = 18/6
= 3
TYPE 02
(2) जब समीकरण x/a = b के रूप में हो।
x/a = b
x = b × a
Exercise 02
(2). Solve the following:
निम्न को सरल करो
01. x/3 = 6
02. y/3 = 6
03. y/6 = 7
04. y/8 = 4
05. x/3 = 6
06. 2m/5 = 6
07. b/2 = 8
08. x/3 = 2
09. 2m/3 = 8
10. 2p/3 = 10
11. 3x/5 = 6
12. 6m/4 = 6
13. 5b/2 = 10
14. 5x/3 = 3
15. 7m/3 = 14
16. 7p/3 = 21
17. 11x/5 = 22
18. 14 = 7m/3
19. 21= 7p/3
20. 22 = 11a/5
Sol. 01
x/3 = 6
x = 6 × 3
= 18
दो चरणीय समीकरणें
Two Step Equations
TYPE 03
(3) जब समीकरण ax + b = c के रूप में हो।
ax + b = c
ax = c – b
c – b
x = _______
a
Exercise 03
(3). Solve the following:
01. x – 1 = 0
02. x + 1 = 0
03. x – 1 = 5
04. x + 6 = 2
05. y – 4 = – 7
06. y – 4 = 4
07. y + 4 = 4
08. y + 4 = – 4
09. x – 5 = 9
10. p + 4 = 15
11. m – 7 = 3
12. x + 4 = 13
13. x + 5 = 18
14. y – 5 = 7
15. x + 10 = 12
16. x – 10 = 14
17. x + 6 = 18
18. y – 9 = 7
19. x + 1 = 12
20. x – 1 = 14
Sol. 01.
3x + 7 = 9
9 –7
x = ______
2
2
x = ___
2
x = 1
TYPE 04
(4) जब समीकरण
ax + b = cx + d के रूप में हो।
सूत्र :– परावर्त्य योज्येत (पक्षांतर व समायोजन) द्वारा
ax + b = cx + d
=> ax – cx = d – b
=> x(a – c) = d + b
d – b
x = ______
a – c
in other words
a1 x + b1 = a2 x + b2
=> a1x – a2x = b2 – b1
=> x(a1 – a2) = b1 + b2
Exercise 04
(4). Solve the following:
निम्न को सरल करो
01. 2x + 7 = x + 9
02. 5y – 6 = 4y – 2
03. 15x + 1 = –5x + 10
04. 1 + 15m = 10 – 5x
05. 8m – 3 = 9 – 2m
06. –5m + 7 = –7x + 5
07. 2x + 3 = 1 – x
08. 2x – 6 = x + 1
09. 3x + 12 = 2x + 24
10. 8x + 13 = 5x – 7
11. 6x + 3 = 7x + 11
12. 3x + 15 = 2x + 14
13. 2x + 34 = 3x + 21
14. 12x + 8 = x – 3
15. 2x + 3 = 5x – 7
Sol. 01.
2x + 7 = x + 9
9 –7
x = ______
2 –1
2
x = ___
1
x = 2
TYPE 05
तीन चरणीय समीकरणें
Three Step Equations
(5) जब समीकरण
a1 x + b1 = a2 x + b2 के रूप में हो।
a1 x + b1
________ + b3 = b4
b2
a1 x + b1
________ = b4 – b3
b2
( a1 x + b1 ) = ( b4 – b3 ) × b2
a1 x = [(b4 – b3)× b2] – b1
[(b4 – b3)× b2] – b1
x = __________________
a1
( a1 x + b1 ) = ( b4 – b3 ) × b2
b2 – b1
x = _________
a2 – a1
Exercise 05
(5). Solve the following:
निम्न को सरल करो
(1)
4x + 2
_______ + 4 = 10
5
(2)
3x + 4
________ + 5 = 17
4
(3) 2( 2x + 4 ) = 20
(4) 8( 3x + 3 ) = 32
(5) 3( 5x – 3 ) = 33
Post a Comment
Post a Comment